Laser-induced breakdown spectroscopy (LIBS) quantitative measurement is harassed by the variability of collected spectra, and the matrix effect of sample is the main reason. The surface geometric morphology of the...
The production and consumption of austenitic stainless steel account for about 70% of stainless steel worldwide. The content of chromium (Cr) must be accurately detected and controlled to form a stable austenite structure and obtain strong properties in production. Laser-induced breakdown spectroscopy (LIBS) can be used to detect the Cr content of austenitic stainless steel in a complex production process. However, LIBS signals may be weak and unstable because the experimental signals are seriously affected by noise, self-absorption, the matrix effect, and the instability of the shot-to-shot signal, rendering the quantitative detection results inaccurate and unstable. The spectral-preprocessing methods of baseline correction and denoising can improve the accuracy of quantitative detection of LIBS. An improved segmented Hermite cubic-interpolation method is proposed herein to correct the baseline offset and produce baseline signals that are smooth and convergent (to overcome the Runge phenomenon). Empirical mode decomposition (EMD) based on the wavelet method is proposed to remove LIBS noise; this is done by exploiting the adaptivity of EMD to refine the wavelet-scaling coefficients. Compared with other denoising methods, the proposed method has good denoising evaluation indices and stability and, thus, effectively removes the noise. To verify detection accuracy, the internal standard quantitative method is used to detect the Cr content, and a cyclic-inversion prediction method is designed to verify detection stability. The results show that the correlation coefficient of the calibration curve is improved, the root-mean-square error is reduced, and the average relative error of the predicted Cr content decreases from 10.46% to 3.858%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.