Global warming has the potential to increase air temperatures by 1.8 to 4.0°C by the end of the 21st century. In order to reveal the effects of increased temperatures on the sucrose metabolism and cellulose synthesis in cotton fibre during its flowering and boll formation stage, field experiments with elevated temperature regimes (32.6/28.6°C, mean daytime/night-time temperature during flowering and boll formation stage during 2010–12, the same below) and ambient temperature regimes (30.1/25.8°C) were conducted. Activities of sucrose synthase and acid/alkaline invertase decreased under elevated temperature in fibre, but activities of sucrose phosphate synthase were increased. Callose content increased, but sucrose content decreased within the cotton fibre under elevated temperature. The disparity of callose content and sucrose content between the two temperature regimes decreased with the number of days post anthesis, indicating that the effects of elevated temperature on both sucrose content and cellulose content were diminished as the boll matured. Due to the dynamics of the carbohydrate content and associated enzyme activities, we hypothesise that the restrained sucrose metabolism and cellulose biosynthesis under elevated temperatures were mainly attributed to the changed activities of sucrose synthase and invertase. Furthermore, 32.6/28.6°C had a negative effect on the cellulose synthesis compared with 30.1/25.8°C.
Global warming could possibly increase the air temperature by 1.8–4.0°C in the coming decade. To forecast the effects of long‐term elevation of air temperature on sucrose synthesis in cotton leaves at different positions, field experiments with the treatments of ambient temperature (control) and elevated temperature (2–3°C) across cotton's boll forming stage were conducted in 2011 and 2012. Results showed that sucrose content in the fourth main‐stem leaves from the terminal (FMLT) during 10–17 days after treatment (DAT) and in the leaves subtending the cotton boll (LSCB) during 17–45 days post‐anthesis (DPA) was lower in the increased temperature treatment than control treatment, but starch content was higher, resulting in higher specific leaf weight (SLW). Lower sucrose content might be attributed to low ribulose‐1,5‐bisphosphate carboxylase‐oxygenase (Rubisco) and cytosolic fructose‐1,6‐bisphosphatase (cy‐FBPase) activities under elevated temperature for all tested leaves. Comparison of different fruiting branch (FB) positions, sucrose transformation rate just decreased in LSCB growing on FB2–3 and FB6–7. Compared with FB10–11, the leaves at FB2–3 and FB6–7 were more sensitive to the increased temperature, showing as that the changing amplitudes of SLW, sucrose content, starch content, initial Rubisco activity and cy‐FBPase activity were greater. Regarding different types of cotton leaves, the effects of elevated temperature on sucrose content, starch content and initial Rubisco activity in FMLT were obvious at the early stage (10–17 DAT), but were not obvious at the late stage. However, the effects were consistent in LSCB from 17 to 45 DPA. In addition, long‐term elevated temperature had smaller impacts on above indices in FMLT than LSCB. Sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities were decreased by elevated temperature in FMLT at the early stage, but were increased in LSCB, suggesting that SPS and SuSy were the key enzymes between FMLT and LSCB in response to elevated temperature.
Global warming could possibly increase the air temperature by 1.8–4.0 °C in the coming decade. Cotton fiber is an essential raw material for the textile industry. Fiber length, which was found negatively related to the excessively high temperature, determines yarn quality to a great extent. To investigate the effects of global warming on cotton fiber length and its mechaism, cottons grown in artificially elevated temperature (34.6/30.5 °C, Tday/Tnight) and ambient temperature (31.6/27.3 °C) regions have been investigated. Becaused of the high sensitivities of enzymes V-ATPase, PEPC, and genes GhXTH1 and GhXTH2 during fiber elongation when responding to high temperature stress, the fiber rapid elongation duration (FRED) has been shortened, which led to a significant suppression on final fiber length. Through comprehensive analysis, Tnight had a great influence on fiber elongation, which means Tn could be deemed as an ideal index for forecasting the degree of high temperature stress would happen to cotton fiber property in future. Therefore, we speculate the global warming would bring unfavorable effects on cotton fiber length, which needs to take actions in advance for minimizing the loss in cotton production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.