Recent researches indicate deep learning models are vulnerable to adversarial attacks. Backdoor attack, also called trojan attack, is a variant of adversarial attacks. An malicious attacker can inject backdoor to models in training phase. As a result, the backdoor model performs normally on clean samples and can be triggered by a backdoor pattern to recognize backdoor samples as a wrong target label specified by the attacker. However, the vanilla backdoor attack method causes a measurable difference between clean and backdoor samples in latent space. Several state-of-the-art defense methods utilize this to identify backdoor samples. In this paper, we propose a novel backdoor attack method called SimTrojan, which aims to inject backdoor in models stealthily. Specifically, SimTrojan makes clean and backdoor samples have indistinguishable representations in latent space to evade current defense methods. Experiments demonstrate that SimTrojan achieves a high attack success rate and is undetectable by state-of-the-art defense methods. The study suggests the urgency of building more effective defense methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.