As a most attractive renewable resource, biomass has the advantages of low pollution, wide distribution and abundant resources, promoting its applications in lithium ion batteries (LIBs). Herein, cellulose-derived carbon nanospheres (CCS) were successfully synthesized by hydrothermal carbonization (HTC) from corn straw for use as an anode in LIBs. The uniform distribution and cross-linked structure of carbon nanospheres were obtained by carefully controlling reaction time, which could not only decrease the transport pathway of lithium ions, but also reduce the structural damage caused by the intercalation of lithium ions. Especially, obtained after hydrothermal carbonization for 36 h, those typical characteristics make it deliver excellent cycling stability as well as the notable specific capacity of 577 mA h g−1 after 100 cycles at 0.2C. Hence, this efficient and environment-friendly method for the fabrication of CCS from corn straw could realize the secondary utilization of biomass waste, as well as serve as a new choice for LIBs anode materials.
Coordination (co)polymerization of para-isopropenylstyrene (pIPSt) and meta-isopropenylstyrene (mIPSt), initiated by scandium (Sc) based catalysts, afforded new type of products, bearing pendant isopropenyl groups with perfect syndiotacity (rrrr > 99%).
In this study, cellulose acetate (CA)/polyvinylpyrrolidone (PVP) core–shell nanofibers were successfully fabricated by electrospinning their homogeneous blending solution. Uniform and cylindrical nanofibers were obtained when the PVP content increased from 0 to 2 wt %. Because of the concentration gradient associated with the solvent volatilization, the composite fibers flattened when the PVP increased to 5 wt %. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results confirmed the existence of a hydrogen bond between the CA and PVP molecules, which enhanced the thermodynamic properties of the CA/PVP nanofibers, as shown by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results. To analyze the interior structure of the CA/PVP fibers, the water-soluble PVP was selectively removed by immersing the fiber membranes in deionized water. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the PVP component, which has a low surface tension, was driven to the exterior of the fiber to form a discontinuous phase, whereas the high-content CA component inclined to form the internal continuous phase, thereby generating a core–shell structure. After the water-treatment, the CA/PVP composite fibers provided more favorable conditions for mineral crystal deposition and growth. Energy-dispersive spectroscopy (EDS) and FTIR proved that the crystal was hydroxyapatite (HAP) and that the calcium to phosphorus ratio was 1.47, which was close to the theoretical value of 1.67 in HAP. Such nanofiber membranes could be potentially applicable in bone tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.