Recent studies have demonstrated the possible function of miR-139-5p in tumorigenesis. However, the exact mechanism of miR-139-5p in cancer remains unclear. In this study, the association of miR-139-5p expression with esophageal squamous cell carcinoma (ESCC) was evaluated in 106 pairs of esophageal cancer and adjacent non-cancerous tissue from ESCC patients. The tumor suppressive features of miR-139-5p were measured by evaluating cell proliferation and cell cycle state, migratory activity and invasion capability, as well as apoptosis. Luciferase reporter assay and Western blot analysis were performed to determine the target gene regulated by miR-139-5p. The mRNA level of NR5A2, the target gene of miR-139-5p, was determined in ESCC patients. Results showed that reduced miR-139-5p level was associated with lymph node metastases of ESCC. MiR-139-5p was investigated to induce cell cycle arrest in the G0/G1 phase and to suppress the invasive capability of esophageal carcinoma cells by targeting the 3′UTR of oncogenic NR5A2. Cyclin E1 and MMP9 were confirmed to participate in cell cycle arrest and invasive suppression induced by NR5A2, respectively. Pearson correlation analysis further confirmed the significantly negative correlation between miR-139-5p and NR5A2 expression. The results suggest that miR-139-5p exerts a growth- and invasiveness-suppressing function in human ESCCs, which demonstrates that miR-139-5p is a potential biomarker for early diagnosis and prognosis and is a therapeutic target for ESCC.
The presumed pathophysiology of isolated neuroleukemiosis is hematogenous spread of leukemic cells into the peripheral nervous system across the blood-nerve barrier. It should be considered in the differential diagnosis in patients with leukemia who present with neuropathy, even when they are considered to be clinically cured of leukemia.
The present study validated the general extended technology acceptance model for e-learning (GETAMEL) with the survey data from the English as a foreign language (EFL) online class during the novel coronavirus lockdown period. A total of 678 undergraduates participated in the survey. Structural equation modeling was employed to analyze the data. The results showed that the influence of perceived usefulness of students on their intentional behavior to use the online learning system was not mediated by their attitude, indicating a very limited role of attitude toward technology in the model. Enjoyment and self-efficacy had no significant effects on the internal constructs, raising theoretical concerns on the applicability of this general model into specific contexts. In addition, we found that experience might be a moderator rather than an antecedent of the internal constructs in the model.
The activation of pyroptosis is an important feature of renal ischemia/reperfusion (rI/R)-induced acute lung injury (ALI). Propofol, a general anesthetic, is known to inhibit inflammation in I/R-induced ALI. We investigated whether propofol could suppress pyroptosis during rI/R-induced ALI by upregulating sirtuin 1 (SIRT1). We generated an in vivo model of rI/R-induced ALI by applying microvascular clamps to the renal pedicles of rats for 45 min. Pathological studies revealed that rI/R provoked substantial lung injury and inflammatory cell infiltration. The rI/R stimulus markedly activated pyroptotic proteins such as NLRP3, ASC, caspase 1, interleukin-1β and interleukin-18 in the lungs, but reduced the mRNA and protein levels of SIRT1. Propofol treatment greatly inhibited rI/R-induced lung injury and pyroptosis, whereas it elevated SIRT1 expression. Treatment with the selective SIRT1 inhibitor nicotinamide reversed the protective effects of propofol during rI/R-induced ALI. Analogous defensive properties of propofol were detected in vitro in rat alveolar macrophages incubated with serum from the rI/R rat model. These findings indicate that propofol attenuates rI/R-induced ALI by suppressing pyroptosis, possibly by upregulating SIRT1 in the lungs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.