BackgroundNestin expression has been reported to be associated with the prognosis of many solid tumors including human hepatocellular carcinoma (HCC). The present study aimed to identify the role, if any, of Nestin in the chemotherapeutic treatment of HCC.MethodsWe determined Nestin expression in nine HCC cell lines and 220 tissue samples of advanced HCC patients (retrospectively registered) treated with FOLFOX regimens. We examined the correlations between Nestin expression and clinicopatholgical variables and HCC prognosis. Also, we used in vitro and in vivo methods to determine the effects of Nestin expression on HCC cell invasion, migration and chemosensitivity.ResultsNestin expression was significantly increased in HCC tissues and drug-resistant cell lines, and the presence of high levels of Nestin was associated with poor survival. We also showed that drug-resistance occurred in HCC cells with epithelial-mesenchymal transition (EMT), which in turn enhanced invasion ability. Nestin depletion reversed drug-resistance in the Bel-7402/5-FU and Bel-7402/ADM cell lines. Nestin knockdown enhanced chemotherapeutic efficacy in nude mice. Moreover, Nestin up-regulation in Bel-7402 was associated with the activation of Wnt/β-catenin signaling.ConclusionOur findings suggest that Nestin inhibitors may be useful for the chemotherapy of HCC.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-016-0387-y) contains supplementary material, which is available to authorized users.
Background: Oxaliplatin (OXA) chemotherapy is widely used in the clinical treatment of colon cancer. However, chemo-resistance is still a barrier to effective chemotherapy in cases of colon cancer. Accumulated evidence suggests that the epithelial mesenchymal transition (EMT) may be a critical factor in chemo-sensitivity. The present study investigated the effects of Zinc finger E-box binding homeobox 1 (ZEB1) on OXA-sensitivity in colon cancer cells.Method: ZEB1expression and its correlation with clinicopathological characteristics were analyzed using tumor tissue from an independent cohort consisting of 118 colon cancer (CC) patients who receiving OXA-based chemotherapy. ZEB1 modulation of OXA-sensitivity in colon cancer cells was investigated in a OXA-resistant subline of HCT116/OXA cells and the parental colon cancer cell line: HCT116. A CCK8 assay was carried out to determine OXA-sensitivity. qRT-PCR, Western blot, Scratch wound healing and transwell assays were used to determine EMT phenotype of colon cells. ZEB1 knockdown using small interfering RNA (siRNA) was used to determine the ZEB1 contribution to OXA-sensitivity in vitro and in vivo (in a nude mice xenograft model).Result: ZEB1 expression was significantly increased in colon tumor tissue, and was correlated with lymph node metastasis and the depth of invasion. Compared with the parental colon cancer cells (HCT116), HCT116/OXA cells exhibited an EMT phenotype characterized by up-regulated expression of ZEB1, Vimentin, MMP2 and MMP9, but down-regulated expression of E-cadherin. Transfection of Si-ZEB1 into HCT116/OXA cells significantly reversed the EMT phenotype and enhanced OXA-sensitivity in vitro and in vivo.Conclusion: HCT116/OXA cells acquired an EMT phenotype. ZEB1 knockdown effectively restored OXA-sensitivity by reversing EMT. ZEB1 is a potential therapeutic target for the prevention of OXA-resistance in colon cancer.
RIZ1 is a tumor suppressor gene. The purpose of the present study was to investigate the inhibitory effect of RIZ1 gene therapy on the growth of SiHa cervical cancer cells and its synergism with paclitaxel. The expression levels of RIZ1 were examined by real-time PCR and western blotting before and after transfection of RIZ1. The effects of paclitaxel or pcDNA3.1(+)-RIZ1 alone or in combination, on the proliferation of SiHa cells were evaluated by MTT method. The inhibitory effect on the proliferation of SiHa cells was more significant in the pcDNA3.1(+)-RIZ1 combined with paclitaxel group than in the pcDNA3.1(+)-RIZ1 or paclitaxel groups (P<0.05). The expression level of RIZ1 in SiHa cells increased after treatment with paclitaxel, which indicated a synergism between them. RIZ1 gene therapy combined with paclitaxel showed stronger cell inhibition than paclitaxel alone, which indicated a synergism between them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.