Imitation learning has been studied widely as a convenient way to transfer human skills to robots. This learning approach is aimed at extracting relevant motion patterns from human demonstrations and subsequently applying these patterns to different situations. Despite many advancements have been achieved, the solutions for coping with unpredicted situations (e.g., obstacles and external perturbations) and high-dimensional inputs are still largely open. In this paper, we propose a novel kernelized movement primitive (KMP), which allows the robot to adapt the learned motor skills and fulfill a variety of additional constraints arising over the course of a task. Specifically, KMP is capable of learning trajectories associated with high-dimensional inputs due to the kernel treatment, which in turn renders a model with fewer open parameters in contrast to methods that rely on basis functions. Moreover, we extend our approach by exploiting local trajectory representations in different coordinate systems that describe the task at hand, endowing KMP with reliable extrapolation capabilities in broader domains. We apply KMP to the learning of time-driven trajectories as a special case, where a compact parametric representation describing a trajectory and its first-order derivative is utilized. In order to verify the effectiveness of our method, several examples of trajectory modulations and extrapolations associated with time inputs, as well as trajectory adaptations with high-dimensional inputs are provided.
When learning skills from demonstrations, one is often required to think in advance about the appropriate task representation (usually in either operational or configuration space). We here propose a probabilistic approach for simultaneously learning and synthesizing torque control commands which take into account task space, joint space and force constraints. We treat the problem by considering different torque controllers acting on the robot, whose relevance is learned probabilistically from demonstrations. This information is used to combine the controllers by exploiting the properties of Gaussian distributions, generating new torque commands that satisfy the important features of the task. We validate the approach in two experimental scenarios using 7-DoF torquecontrolled manipulators, with tasks that require the consideration of different controllers to be properly executed.
Programming by demonstration has recently gained much attention due to its user-friendly and natural way to transfer human skills to robots. In order to facilitate the learning of multiple demonstrations and meanwhile generalize to new situations, a task-parameterized Gaussian mixture model (TP-GMM) has been recently developed. This model has achieved reliable performance in areas such as humanrobot collaboration and dual-arm manipulation. However, the crucial task frames and associated parameters in this learning framework are often set by the human teacher, which renders three problems that have not been addressed yet: (i) task frames are treated equally, without considering their individual importance, (ii) task parameters are defined without taking into account additional task constraints, such as robot joint limits and motion smoothness, and (iii) a fixed number of task frames are pre-defined regardless of whether some of them may be redundant or even irrelevant for the task at hand. In this paper, we generalize the task-parameterized learning by addressing the aforementioned problems. Moreover, we provide a novel learning perspective which allows the robot to refine and adapt previously learned skills in a low dimensional space. Several examples are studied in both simulated and real robotic systems, showing the applicability of our approach.
This is a repository copy of Jointly learning trajectory generation and hitting point prediction in robot table tennis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.