Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of PRRS, which is characterized by late-term abortions in sows and respiratory disease in young pigs. Using an infectious cDNA clone of North American PRRSV strain P129, the viral genome was engineered to transcribe an additional subgenomic RNA initiating between non-structural and structural genes. Two unique restriction sites and a copy of the transcription regulatory sequence for ORF6 (TRS6) were inserted between ORFs 1b and 2a, yielding a general purpose expression vector. The enhanced green fluorescent protein (GFP) gene was cloned between the unique sites such that the inserted gene was transcribed from TRS2 which was located upstream within ORF1b, while the copy of TRS6 drives ORF2a/b transcription. Upon transfection of cells with this plasmid, PRRSV infection was initiated and progeny virus "P129-GFP" was obtained. Cells infected with P129-GFP showed fluorescence and the inserted gene was phenotypically stable for at least 37 serial in vitro passages. Subsequently, a capsid (C) protein gene was cloned from porcine circovirus type 2 (PCV2) recovered from an outbreak of porcine multisystemic wasting syndrome (PMWS) and inserted into the PRRSV infectious clone vector, generating virus "P129-PCV". To determine the immunogenicity of the recombinant viruses, pigs were immunized intramuscularly with P129-WT (wild-type), P129-GFP, or P129-PCV2. By 5 weeks post-infection, specific antibody responses to GFP and PCV2 capsid were elicited. This is the first report of foreign gene expression using PRRSV from dedicated subgenomic RNAs and demonstrates the potential use of PRRSV as a vaccine vector for swine pathogens.
BackgroundThere is poor understanding of most aspects of Clostridium perfringens type A as a possible cause of neonatal diarrhea in piglets, and the prevalence and types of C. perfringens present on Ontario swine farms is unknown. To study the prevalence of fecal C. perfringens and selected toxin genes, 48 Ontario swine farms were visited between August 2010 and May 2011, and 354 fecal samples were collected from suckling pigs, lactating sows, weanling pigs, grower-finisher pigs, and gestating sows, as well as from manure pits. The fecal samples were cultured quantitatively, and toxin genes were detected by real-time multiplex polymerase chain reaction (PCR).ResultsIn mixed multivariable linear analysis, log10C. perfringens in fecal samples from suckling pigs were higher than that of weanling pigs, grower-finisher pigs, and manure pit samples (P <0.05). In mixed multivariable logistic analysis, the C. perfringens isolates recovered from lactating sows (OR = 0.069, P <0.001), gestating sows (OR = 0.020, P <0.001), grower-finishers (OR = 0.017, P <0.001), and manure pits (OR = 0.11, P <0.001) were less likely to be positive for the consensus beta2 toxin gene cpb2 compared to the isolates from suckling pigs. The prevalence of cpb2 in the isolates recovered from weanlings did not differ significantly from suckling pigs. C. perfringens isolates that were positive for cpb2 were more likely to carry the atypical cpb2 gene (atyp-cpb2) (OR = 19, P <0.001) compared to isolates that were negative for cpb2. Multivariable analysis did not identify farm factors affecting the presence of consensus cpb2 and atyp-cpb2 genes.ConclusionsThis study provides baseline data on the prevalence of C. perfringens and associated toxin genes in healthy pigs at different stages of production on Ontario swine farms. The study suggests that if C. perfringens type A are involved in neonatal enteritis, there may be strains with specific characteristics that cannot be identified by the existing genotyping system.
The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of Coronavirus Disease 2019 (COVID-19). Worldwide efforts are being made to develop vaccines to mitigate this pandemic. We engineered two recombinant Newcastle disease virus (NDV) vectors expressing either the full-length SARS-CoV-2 spike protein (NDV-FLS) or a version with a 19 amino acid deletion at the carboxy terminus (NDV-Δ19S). Hamsters receiving two doses (prime-boost) of NDV-FLS developed a robust SARS-CoV-2-neutralizing antibody response, with elimination of infectious virus in the lungs and minimal lung pathology at five days post-challenge. Single-dose vaccination with NDV-FLS significantly reduced SARS-CoV-2 replication in the lungs, but only mildly decreased lung inflammation. NDV-Δ19S-treated hamsters had a moderate decrease in SARS-CoV-2 titers in lungs and presented with severe microscopic lesions, suggesting that truncation of the spike protein was a less effective strategy. In summary, NDV-vectored vaccines represent a viable option for protection against COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.