Forest fire patterns are likely to be altered by climate change. We used boosted regression trees modelling and the MODIS Global Fire Atlas dataset (2003–15) to characterise relative influences of nine natural and human variables on fire patterns across five forest zones in China. The same modelling approach was used to project fire patterns for 2041–60 and 2061–80 based on two general circulation models for two representative concentration pathways scenarios. The results showed that, for the baseline period (2003–15) and across the five forest zones, climate variables explained 37.4–43.5% of the variability in fire occurrence and human activities were responsible for explaining an additional 27.0–36.5% of variability. The fire frequency was highest in the subtropical evergreen broadleaf forests zone in southern China, and lowest in the warm temperate deciduous broadleaved mixed-forests zone in northern China. Projection results showed an increasing trend in fire occurrence probability ranging from 43.3 to 99.9% and 41.4 to 99.3% across forest zones under the two climate models and two representative concentration pathways scenarios relative to the current climate (2003–15). Increased fire occurrence is projected to shift from southern to central-northern China for both 2041–60 and 2061–80.
This paper experimentally evaluates the effect of slope on spread of a linear flame front over a pine needle fuel bed in still air. The slope angle of the fuel bed varied from 0 to 32°. The fuel mass consumption in flaming fire spread, temperature over the fuel bed, velocities of the flow around the flame front and heat fluxes (total and radiant) near the end of the fuel bed were measured. The mass loss rate and rate of fire spread both increased with increasing slope, whereas the fuel consumption efficiency varied in the opposite way. It was shown that a weak reverse inflow and an upslope wind (induced by the flame itself) exist respectively ahead of and behind the flame front, and their significant difference in velocity (causing a pressure difference) plays an essential role in the forward tilting of the flame front. This mechanism promotes burning, especially on higher slopes. Natural convective cooling has a remarkable effect on the fuel pre-heating in the spread of linear flame fronts under slope conditions. A fire spread model for a linear flame front was developed to consider the natural convective cooling and the fuel consumption efficiency. The model agrees well with the experimental data on fire spread rate. Its reliability, especially for higher slopes, was verified by comparison with other models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.