SARS-CoV-2, a novel ß-coronavirus, cause severe pneumonia and has spread throughout the globe rapidly. The disease associated with SARS-CoV-2 infection is named COVID-19. To date, real-time RT-PCR is the only test able to confirm this infection. However, the accuracy of RT-PCR depends on several factors; variations in these factors might significantly lower the sensitivity of detection. Here, we developed a peptide-based luminescent immunoassay that detected immunoglobulin G (IgG) and IgM. The assay cut-off value was determined by evaluating the sera from healthy and infected patients for pathogens other than SARS-CoV-2. To evaluate assay performance, we detected IgG and IgM in the sera from confirmed patients. The positive rate of IgG and IgM was 71.4% and 57.2%, respectively. Therefore, combining our immunoassay with real-time RT-PCR might enhance the diagnostic accuracy of COVID-19.
A respiratory illness has been spreading rapidly in China, since its outbreak in Wuhan city, Hubei province in December 2019. The illness was caused by a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical manifestations related to SARS-CoV-2 infection ranged from no symptom to fatal pneumonia. World Health Organization (WHO) named the diseases associated with SARS-CoV-2 infection as COVID-19. Real time RT-PCR is the only laboratory test available till now to confirm the infection. However, the accuracy of real time RT-PCR depends on many factors, including sampling location and of methods, quality of RNA extraction and training of operators etc. Variations in these factors might significantly lower the sensitivity of the detection. We developed a peptide-based luminescent immunoassay to detect IgG and IgM. Cut-off value of this assay was determined by the detection of 200 healthy sera and 167 sera from patients infected with other pathogens than SARS-CoV-2. To evaluate the performance of this assay, we detected IgG and IgM in the 276 sera from confirmed patients. The positive rate of IgG and IgM were 71.4% (197/276) and 57.2% (158/276) respectively. By combining with real time RT-PCR detection, this assay might help to enhance the accuracy of diagnosis of SARS-CoV-2 infection.
Chronic Hepatitis B Virus (HBV) infections can progresses to liver cirrhosis and hepatocellular carcinoma (HCC). The HBV covalently-closed circular DNA cccDNA is a key to HBV persistence, and its degradation can be induced by the cellular deaminase APOBEC3. This study aimed to measure the distribution of intrahepatic cccDNA levels and evaluate the association between levels of cccDNA and APOBEC3 in HCC patients. Among 49 HCC patients, 35 matched cancerous and contiguous noncancerous liver tissues had detectable cccDNA, and the median intrahepatic cccDNA in the cancerous tissues (CT) was significantly lower than in the contiguous noncancerous tissues (CNCT) (p = 0.0033). RCA (rolling circle amplification), followed by 3D-PCR identified positive amplification in 27 matched HCC patients. Sequence analysis indicated G to A mutations accumulated to higher levels in CT samples compared to CNCT samples, and the dinucleotide context showed preferred editing in the GpA context. Among 7 APOBEC3 genes, APOBEC3B was the only one up-regulated in cancerous tissues both at the transcriptional and protein levels (p < 0.05). This implies APOBEC3B may contribute to cccDNA editing and subsequent degradation in cancerous tissues.
Esterification is an important chemical modification for the preparation of natural cellulose-based materials.However, esterification of cellulose is commonly carried out in organic solvents, which reduces the economic and environmental feasibility of the synthetic technologies. Herein we report a novel technology for the production of cellulose esters, which combines mechanical activation (MA) and esterification in a stirring ball mill under solid phase conditions without the use of solvents. With the use of acetic anhydride as co-reactant and fatty acids as long chain esterifying agents, 1 H and 13 C NMR measurements confirmed that both acetyl and long chain fatty acyl groups were successfully grafted on cellulose by the technology of MA-assisted solid phase synthesis (MASPS). The factors which contributed to the successful preparation of cellulose esters were: the formation of highly reactive mixed acetic-long chain fatty acid anhydride, the generation of active hydroxyl groups in cellulose, the weakening of the steric effect of long chain fatty acids, and the improved contact between reagents and cellulose which were first induced by intense milling. It also showed that the reactivity of fatty acids and the degree of substitution (DS) of fatty acyls decreased with the increase in their chain length, and the long chain fatty acylium ions preferred to react with the more reactive hydroxyl group in the anhydro glucose unit of cellulose. Moreover, Fourier transform infrared spectroscopy, X-ray diffractometry, and scanning electron microscopy analyses were used to measure the changes in chemical structure, crystal structure, and surface morphology of the cellulose before and after esterification by MASPS, respectively. The results indicate that this green, simple, and efficient technology is suitable for the direct production of cellulose esters with long chain substituents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.