In order to solve the problems of heavy computational load and poor real time of the information fusion method based on the federated Kalman filter (FKF), a novel information fusion method based on the complementary filter is proposed for strapdown inertial navigation (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation system of an aerospace plane. The complementary filters are designed to achieve the estimations of attitude, velocity, and position in the SINS/CNS/GPS integrated navigation system, respectively. The simulation results show that the proposed information fusion method can effectively realize SINS/CNS/GPS information fusion. Compared with FKF, the method based on complementary filter (CF) has the advantages of simplicity, small calculation, good real-time performance, good stability, no need for initial alignment, fast convergence, etc. Furthermore, the computational efficiency of CF is increased by 94.81%. Finally, the superiority of the proposed CF-based method is verified by both the semi-physical simulation and real-time system experiment.
In order to achieve the fine alignment of strapdown inertial navigation (SINS) under large misalignment angles, a novel filtering alignment method is proposed based on the second-order extended Kalman filter (EKF2) and adaptive fuzzy inference system (AFIS). Firstly, the quaternion is employed to represent the attitude errors of SINS. A second-order nonlinear state equation is made based on the nonlinear velocity error model and attitude error model, and the linear measurement equation is based on the velocity outputs from SINS. Then, the filtering scheme is designed based on EKF2 and AFIS. The error estimation and fine alignment can be achieved by using the proposed filtering scheme. The results of Monte Carlo Simulation show that the errors of pitch, roll and yaw misalignment angles quickly decrease to about 14″, 15″ and 7.62′ respectively in 350 s under the condition of any misalignment angles with pitch error from −40° to 40°, roll error from −40° to 40°, and yaw error from −50° to 50°. Even when the initial misalignment angles are all very large such as (80°, 120°, 170°), the proposed nonlinear alignment method still can converge normally by utilizing the adaptive fuzzy inference system (AFIS) to adjust the covariance matrix Pk/k−1. Finally, the turntable experiment was performed, and the effectiveness and superiority of the proposed method were further verified by compared with other nonlinear methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.