The physical properties of cometary nuclei observed today relate to their complex history and help to constrain their formation and evolution. In this article, we review some of the main physical properties of cometary nuclei and focus in particular on the thermal, mechanical, structural and dielectric properties, emphasizing the progress made during the Rosetta mission. Comets have a low density of 480 ± 220 kg m -3 and a low permittivity of 1.9 -2.0, consistent with a high porosity of 70 -80 %, are weak with a very low global tensile strength <100 Pa, and have a low bulk thermal inertia of 0 -60 J K -1 m -2 s -1/2 that allowed them to preserve highly volatiles species (e.g. CO, CO2, CH4, N2) into their interior since their formation. As revealed by 67P/Churyumov-Gerasimenko, the above physical properties vary across the nucleus, spatially at its surface but also with depth. The broad picture is that the bulk of the nucleus consists of a weakly bonded, rather homogeneous material that preserved primordial properties under a thin shell of processed material, and possibly covered by a granular material; this cover might in places reach a thickness of several meters. The properties of the top layer (the first meter) are not representative of that of the bulk nucleus. More globally, strong nucleus heterogeneities at a scale of a few meters are ruled out on 67P's small lobe.
Aims. Using data from the Rosetta mission to comet 67P/Churyumov–Gerasimenko, we evaluate the physical properties of the surface and subsurface of the nucleus and derive estimates for the thermal inertia (TI) and roughness in several regions on the largest lobe of the nucleus. Methods. We have developed a thermal model to compute the temperature on the surface and in the uppermost subsurface layers of the nucleus. The model takes heat conduction, self-heating, and shadowing effects into account. To reproduce the brightness temperatures measured by the MIRO instrument, the thermal model is coupled to a radiative transfer model to derive the TI. To reproduce the spatially resolved infrared measurements of the VIRTIS instrument, the thermal model is coupled to a radiance model to derive the TI and surface roughness. These methods are applied to Rosetta data from September 2014. Results. The resulting TI values from both instruments are broadly consistent with each other. From the millimetre channel on MIRO, we determine the TI in the subsurface to be <80 JK−1 m−2 s−0.5 for the Seth, Ash, and Aten regions. The submillimetre channel implies similar results but also suggests that higher values could be possible. A low TI is consistent with other MIRO measurements and in situ data from the MUPUS instrument at the final landing site of Philae. The VIRTIS results give a best-fitting value of 80 JK−1 m−2 s−0.5 and values in the range 40–160 JK−1 m−2 s−0.5 in the same areas. These observations also allow the subpixel scale surface roughness to be estimated and compared to images from the OSIRIS camera. The VIRTIS data imply that there is significant roughness on the infrared scale below the resolution of the available shape model and that, counter-intuitively, visually smooth terrain (centimetre scale) can be rough at small (micrometre–millimetre) scales, and visually rough terrain can be smooth at small scales.
Context. With hundreds of exoplanets detected, it is necessary to revisit giant planets accretion models to explain their mass distribution. In particular, formation of sub-jovian planets remains unclear, given the short timescale for the runaway accretion of massive atmospheres. However, gas needs to pass through a circum-planetary disc. If the latter has a low viscosity (as expected if planets form in "dead zones"), it might act as a bottleneck for gas accretion. Aims. We investigate what the minimum accretion rate is for a planet under the limit assumption that the circum-planetary disc is totally inviscid, and the transport of angular momentum occurs solely because of the gravitational perturbations from the star. Methods. To estimate the accretion rate, we present a steady-state model of an inviscid circum-planetary disc, with vertical gas inflow and external torque from the star. Hydrodynamical simulations of a circum-planetary disc were conducted in 2D, in a planetocentric frame, with the star as an external perturber in order to measure the torque exerted by the star on the disc. Results. The disc shows a two-armed spiral wave caused by stellar tides, propagating all the way in from the outer edge of the disc towards the planet. The stellar torque is small and corresponds to a doubling time for a Jupiter mass planet of the order of 5 Myr. Given the limit assumptions, this is clearly a lower bound of the real accretion rate. Conclusions. This result shows that gas accretion onto a giant planet can be regulated by circum-planetary discs. This suggests that the diversity of masses of extra-solar planets may be the result of different viscosities in these discs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.