The decreasing width of the retinal damage zone suggests that photoreceptors migrating from unaffected areas fill in the gap in the photoreceptor layer. Laser photocoagulation parameters can be specified to avoid not only the inner retinal damage, but also permanent disorganization and scarring in the photoreceptor layer. These data may facilitate studies to determine those aspects of laser treatment necessary for beneficial clinical response and those that result in extraneous retinal damage.
Most reported photoacoustic ocular imaging work to date uses small animals, such as mice and rats, the eyeball sizes of which are less than one-third of those of humans, posing challenges for clinical translation. Here we developed a novel integrated photoacoustic microscopy (PAM) and optical coherence tomography (OCT) system for dual-modality chorioretinal imaging of larger animals, such as rabbits. The system has quantified lateral resolutions of 4.1 µm (PAM) and 3.8 µm (OCT), and axial resolutions of 37.0 µm (PAM) and 4.0 µm (OCT) at the focal plane of the objective. Experimental results in living rabbits demonstrate that the PAM can noninvasively visualize individual depth-resolved retinal and choroidal vessels using a laser exposure dose of ~80 nJ below the American National Standards Institute (ANSI) safety limit 160 nJ at 570 nm; and the OCT can finely distinguish different retinal layers, the choroid, and the sclera. This reported work may be a major step forward in clinical translation of the technology.
We developed a photoacoustic ocular imaging device and demonstrated its utility in imaging the deeper layers of the eye including the retina, choroid, and optic nerve. Using safe laser intensity, the photoacoustic system was able to visualize the blood distribution of an enucleated pig’s eye and an eye of a living rabbit. Ultrasound images, which were simultaneously acquired, were overlaid on the photoacoustic images to visualize the eye’s anatomy. Such a system may be used in the future for early detection and improved management of neovascular ocular diseases, including wet age-related macular degeneration and proliferative diabetic retinopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.