Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.
Specific geometric parameters in AAA models in the presence of ILT could serve as potential predictors of elevated PWS. PWS correlated significantly with the maximum diameter and the degree of centreline tortuosity. Centreline tortuosity may become a useful addition to maximum diameter in the decision-making process of AAA treatment.
This paper describes a computational and experimental investigation of flow in a proto-type model geometry of a fully occluded 45 deg distal end-to-side anastomosis. Previous investigations have considered a similar configuration where the centerlines of the bypass and host vessels lie within a plane, thereby producing a plane of symmetry within the flow. We have extended these investigations by deforming the bypass vessel out of the plane of symmetry, thereby breaking the symmetry of the flow and producing a nonplanar geometry. Experimental data were obtained using magnetic resonance imaging of flow within perspex models and computational data were obtained from simulations using a high-order spectral/hp element method. We found that the nonplanar three-dimensional flow notably alters the distribution of wall shear stress at the bed of the anastomosis, reducing the peak wall shear stress peak by approximately 10 percent when compared with the planar model. Furthermore, an increase in the absolute flux of velocity into the occluded region, proximal to the anastomosis, of 80 percent was observed in the nonplanar geometry when compared with the planar geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.