Oxygen deficiency and coldness are the main challenges for highway tunnel construction in high-altitude areas such as western Sichuan plateau. The artificial oxygen supply and anti-freezing structure in the tunnel construction process has a significant impact on vocational health and the environment. Thus, the conditions of tunnels need to be carefully evaluated before construction. However, the current design code for tunnel construction contains few instructions about these aspects. This paper attempts to establish a simple evaluation method to guide the construction design by analyzing the oxygen partial pressure of trachea, the mean temperature of the coldest month, and the maximum freezing depth for tunnel projects in western Sichuan plateau. Based on the on-site meteorological monitoring at different altitudes of three typical tunnels in the western Sichuan plateau and the comparative analysis of the existing meteorological data, the corresponding relationships between the three parameters and the altitude were investigated. The thresholds by altitude for grading the tunnels are identified as 2100 m and 4200 m, respectively. The highway tunnels in the western Sichuan plateau are graded in three categories, namely, general-altitude tunnels, high-altitude tunnels, and ultra-high-altitude tunnels. The corresponding measures of oxygen supply and freezing prevention for different graded tunnels are recommended. The results would provide a basis for the design and construction of new tunnels and enhance the service life and operations safety of the tunnels in western Sichuan plateau and other similar high-altitude areas.
Hydrogels with good flexibility and strong hydrophilicity can be candidates for excellent flexible electrolyte materials. However, the poor structural stability, uncontrollable swelling, and lower potential window of hydrogel electrolytes need to be improved. This work combined quaternized gelatin with cross-linked poly(acrylic acid-co-acrylamide) to form a semiinterpenetrating network and gelatinized in situ in a flexible porous wood skeleton. The flexible wood (FW) skeleton enhances the hydrogel and limits the swelling of the hydrogel. In addition, quaternary ammonium groups and FW act synergistically to provide the composite hydrogel electrolyte with a high ionic conductivity of 5.57 × 10 −2 S cm −1 . The composite hydrogel electrolyte can enable the flexible supercapacitor to operate safely in a potential window of 0−2 V. The optimized supercapacitor has a high specific capacitance of 286.74 F g −1 and provides an outstanding energy density of 39.09 W h kg −1 . The flexible supercapacitor shows a capacitance retention of up to 94.6% after 10,000 charge−discharge cycles, indicating dramatic cycling stability. Simultaneously, a capacitance retention of nearly 90% can be maintained by the flexible supercapacitor after 180°bends for 1000 times. A viable idea for developing high-performance hydrogel electrolytes and flexible supercapacitors is provided in this research.
Slate with inherently transverse isotropy is abundant in metamorphic rock, in buildings, and in geotechnical engineering worldwide; the tensile and shear fracture behavior of layered slate is vital to know for engineering applications. In this paper, the Brazilian and semi-circular bend (SCB) tests of layered slate were performed. The fracture characteristics of the slate were investigated by numerical simulations developed by the hybrid finite and cohesive element method (FCEM). Results showed that the measured experimental tensile strength, and mode I fracture toughness of layered slate all showed a typical V-type trend as the bedding angle increased from 0° to 90°, and with divider type. The developed empirical relationship between tensile fracture toughness and tensile strength KIC = 0.094σt + 0.036 fitted experimentally and strongly correlated. The mechanical response and fracture patterns predicted by FCEM agreed well with those of the laboratory experiments. Moreover, the shear fracture behavior and mode II fracture toughness of the layered slate were explored by systematic numerical simulations. Research results provide potential insights for further prediction and improvement of the complex fracture behavior of anisotropic rock masses for rock engineering.
Lateral swelling pressure (LSP) develops when expansive soil volume increment associated with water infiltration is restrained in a confined domain, for example, due to construction of civil infrastructure. In this paper, initially a flowchart is developed to highlight various key factors that influence the LSP mobilization according to lab and field studies collected from previous literature studies. Then extending unsaturated soil mechanics, a theoretical framework is proposed for illustrating the LSP mobilization in the field against retaining structures and pile foundations under different boundary conditions, respectively. An example problem for a basement wall and a pile foundation constructed in a typical expansive soil from Regina, Canada, is presented to illustrate the proposed theoretical framework. The framework and corresponding analysis presented in this paper can facilitate to provide rational designs of geotechnical infrastructures in expansive soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.