Idiosyncratic drug-induced liver injury (IDILI) is an idiosyncratic drug reaction that is specific to an individual and can lead to liver failure and even death. The mechanism of IDILI remains poorly understood, but most IDILI appears to be immunemediated. We have developed the first validated animal model by using a PD-1 −/− mouse model in combination with anti-CTLA-4 to block immune checkpoints and impair immune tolerance. Treatment of these mice with drugs that cause IDILI in humans led to delayed-onset liver injury with characteristics similar to IDILI in humans. The current study investigates the effects of green tea extract, a weight-loss dietary supplement that has been reported to cause IDILI in humans. Green tea extracts contain a highly variable content of catechins including (−)-epigallocatechin gallate, the major catechin in green tea formulations. If the liver injury caused by green tea extract in humans is immune-mediated, it may occur in our impaired immune tolerance model. Female PD-1 −/− mice treated with anti-CTLA-4 antibody and green tea extract (500 mg/kg), a dose that is considered a no-observed-adverse-effect level for liver in rodents, produced a delayed onset increase in serum alanine transaminase levels and an increase in hepatic CD8 + T cells. In contrast, the response in male PD-1 −/− mice was less pronounced, and there was no evidence of liver injury in wild-type mice. These findings are consistent with the hypothesis that the IDILI caused by green tea extract is immune-mediated and is similar to IDILI caused by medications that are associated with IDILI.
Trimethoprim (TMP)-induced skin rash and liver injury are likely to involve the formation of reactive metabolites. Analogous to nevirapine-induced skin rash, 1 possible reactive metabolite is the sulfate conjugate of α-hydroxyTMP, a metabolite of TMP. We synthesized this sulfate and found that it reacts with proteins in vitro. We produced a TMP-antiserum and found covalent binding of TMP in the liver of TMP-treated rats. However, we found that α-hydroxyTMP is not a substrate for human sulfotransferases, and we did not detect covalent binding in the skin of TMP-treated rats. Although less reactive than the sulfate, α-hydroxyTMP was found to covalently bind to liver and skin proteins in vitro. Even though there was covalent binding to liver proteins, TMP did not cause liver injury in rats or in our impaired immune tolerance mouse model that has been able to unmask the ability of other drugs to cause immune-mediated liver injury. This is likely because there was much less covalent binding of TMP in the livers of TMP-treated mice than TMP-treated rats. It is possible that some patients have a sulfotransferase that can produce the reactive benzylic sulfate; however, α-hydroxyTMP, itself, has sufficient reactivity to covalently bind to proteins in the skin and may be responsible for TMP-induced skin rash. Interspecies and interindividual differences in TMP metabolism may be 1 factor that determines the risk of TMP-induced skin rash. This study provides important data required to understand the mechanism of TMP-induced skin rash and drug-induced skin rash in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.