Cell cultures are used in pharmaceutical, medical and biological sciences. Due to the ethical and cost limitations of in vivo models, the replaceable cell model that is more closely related to the characteristics of organisms, which has broad prospects and can be used for high-throughput drug screening is urgent. Neuronal and glial cell models have been widely used in the researches of neurological disorders. And the current researches on neuroinflammation contributes to blood-brain barrier (BBB) damage. In this review, we describe the features of healthy and inflamed BBB and summarize the main immortalized cell lines of the central nervous system (PC12, SH-SY5Y, BV2, HA, and HBMEC et al.) and their use in the anti-inflammatory potential of neurological disorders. Especially, different co-culture models of neuroinflammatory, in association with immune cells in both 2D and 3D models are discussed in this review. In summary, 2D co-culture is easily practicable and economical but cannot fully reproduce the microenvironment in vivo. While 3D models called organs-on-chips or biochips are the most recent and very promising approach, which made possible by bioengineering and biotechnological improvements and more accurately mimic the BBB microenvironment.
ObjectivesWe systematically analysed recommendations from gout guidelines as an example, to provide a basis for developing a reporting standard of recommendations in clinical practice guidelines (CPGs).DesignSystematic review without meta-analysis.MethodsWe systematically searched MEDLINE and all relevant guideline websites (National Institute for Health and Care Excellence, National Guideline Clearinghouse, Scottish Intercollegiate Guidelines Network, WHO, Guidelines International Network, DynaMed, UpTodate, Best Practice) from their inception to January 2017 to identify and select gout CPGs. We used search terms such as ‘gout’, ‘hyperuricemia’ and ‘guideline’. We included the eligible CPGs of gout according to the predefined inclusion and exclusion criteria after screening titles, abstracts and full texts. The characteristics of recommendations reported in the included guidelines were extracted and analysed.ResultsA total of 15 gout guidelines with a range of 5–80 recommendations were retrieved. Several indicators were used in the gout guidelines to facilitate identification of recommendations, including grouping all recommendations in a summary section, formatting recommendations in a particular or special way, using locating words for recommendations and indicating the strength of recommendation and quality of evidence. We found some components commonly used in the recommendations. The wording of recommendations varied across guidelines. Recommendations were detailed and explained in the section of rationale and explanation of recommendations. In some guidelines, recommendations were accompanied with other material to assist their reporting.ConclusionsVariability and inconsistency were found on the reporting and presentation of recommendations in gout guidelines. Several points for reporting recommendation can be summarised. First, we suggested summarising and highlighting the core recommendations in a guideline. Second, guideline developers should try to structure and write recommendations reasonably. Third, it was necessary to detail and explain the recommendations and their rationale. Finally, describing and providing other potential useful contents was also a helpful way for clear reporting.
Inflammation plays a crucial role in a variety of diseases, including diabetes, arthritis, asthma, Alzheimer’s disease (AD), acute cerebral stroke, cancer, hypertension, and myocardial ischemia. Therefore, we need to solve the problem urgently for the study of inflammation-related diseases. Dihydromyricetin (DHM) is a flavonoid mainly derived from Nekemias grossedentata (Hand.-Mazz.) J.Wen and Z.L.Nie (N.grossedentata). DHM possesses many pharmacological effects, including anti-inflammatory (NLRP-3, NF-κB, cytokines, and neuroinflammation), antioxidant, improving mitochondrial dysfunction, and regulating autophagy and so on. In this review, we consulted the studies in the recent 20 years and summarized the mechanism of DHM in inflammation-related diseases. In addition, we also introduced the source, chemical structure, chemical properties, and toxicity of DHM in this review. We aim to deepen our understanding of DHM on inflammation-related diseases, clarify the relevant molecular mechanisms, and find out the problems and solutions that need to be solved urgently. Providing new ideas for DHM drug research and development, as well as broaden the horizons of clinical treatment of inflammation-related diseases in this review. Moreover, the failure of clinical transformation of DHM poses a great challenge for DHM as an inflammation related disease.
Previous studies have demonstrated that miRNAs play an important role in tumor development and progression. The role of miR-320d has been studied in several cancers except for glioma. The aim of the study was to investigate the expression levels, biological function, and mechanism of miR-320d in glioma. The expression levels of miR-320d were detected in glioma tissues and cell lines (U87 and U251) by RT-qPCR. Cell proliferation, colony formation, apoptosis, cell cycle, and transwell assays were performed in glioma cell lines transfected with miR-320d mimics or controls to evaluate the effects of miR-320d in vitro. The expression levels of invasive-related proteins were determined by Western blot analysis. Results showed that the expression of miR-320d was significantly decreased in glioma tissues and cell lines. Overexpression of miR-320d could significantly suppress cell growth, migration and invasion, and induced cell apoptosis as well as cell cycle at G0/G1 arrest in U87 and U251 cell lines. Additionally, expression levels of MMP-2, MMP-9, N-cadherin, and integrin-β1 reduced, while E-cadherin increased in miR-320d mimic group. Overall, this study is the first to demonstrate that miR-320d may serve as an independent prognostic factor, indicating that miR-320d is a biomarker for prognosis and therapy in glioma.
Neurological diseases, including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), stroke, cerebral infarction, ischemia-reperfusion injury, depression and, stress, have high incidence and morbidity and often lead to disability. However, there is no particularly effective medication against them. Therefore, finding drugs with a suitable efficacy, low toxicity and manageable effects to improve the quality of life of patients is an urgent problem. Ginsenoside Rg1 (Rg1) is the main active component of ginseng and has a variety of pharmacological effects. In this review, we focused on the therapeutic potential of Rg1 for improving neurological diseases. We introduce the mechanisms of Ginsenoside Rg1 in neurological diseases, including apoptosis, neuroinflammation, the microRNA (miRNA) family, the mitogen-activated protein kinase (MAPK) family, oxidative stress, nuclear factor-κB (NF-κB), and learning and memory of Rg1 in neurological diseases. In addition, Rg1 can also improve neurological diseases through the interaction of different signal pathways. The purpose of this review is to explore more in-depth ideas for the clinical treatment of neurological diseases (including PD, AD, HD, stroke, cerebral infarction, ischemia–reperfusion injury, depression, and stress). Therefore, Rg1 is expected to become a new therapeutic method for the clinical treatment of neurological diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.