Purpose
Retinopathy of prematurity (ROP) is a disease that causes vision loss, vision impairment, and blindness, most frequently manifesting among preterm infants. ROPScore and CHOP ROP (Children’s Hospital of Philadelphia ROP) are similar scoring models to predict ROP using risk factors such as postnatal weight gain, birth weight (BW), and gestation age (GA). The purpose of this study was to compare the accuracy and difference between using ROPScore and CHOP ROP for the early prediction of ROP.
Methods
A retrospective study was conducted from January 2009 to December 2019 in China. Patients eligible for enrollment included infants admitted to NICU at ≤32 weeks GA or those with ≤1500 g BW. The sensitivity and specificity of ROPScore and CHOP ROP were analyzed, as well as its suitability as an independent predictor of ROP.
Results
Severe ROP was found in 5.0% of preterm infants. The sensitivity and specificity of the ROPScore test at any stage of ROP was 55.8 and 77.8%, respectively. For severe ROP, the sensitivity and specificity was 50 and 87.0%, respectively. The area under the receiver operating characteristic curve for the ROPScore for predicting severe ROP was 0.76. This value was significantly higher than the values for birth weight (0.60), gestational age (0.73), and duration of ventilation (0.63), when each was category measured separately. For the CHOP ROP, it correctly predicted infants who developed type 1 ROP (sensitivity, 100%, specificity, 21.4%).
Conclusions
The CHOP ROP model predicted infants who developed type 1 ROP at a sensitivity of 100% whereas ROPScore had a sensitivity of 55.8%. Therefore, the CHOP ROP model is more suitable for Chinese populations than the ROPScore test.
Clinical registration number and STROBE guidelines
This article was a retrospective cohort study and reported the results of the ROPScore and CHOP ROP algorithms. No results pertaining to interventions on human participants were reported. Thus, registration was not required and this study followed STROBE guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.