Response surface method is used to build models for predicting an octane number and determining the component proportions of a gasoline surrogate fuel. The fuel is synthesized using toluene, iso-octane, and n-heptane and is referred to as toluene reference fuel. The built models include second-order model and third-order model. Both models can excellently predict the octane number of the toluene reference fuel with known component proportions. Moreover, the third-order model is more accurate than second-order model in determining the component proportions of the toluene reference fuel, and the relative error is less than 8%. Therefore, the third-order model can accurately predict the octane number and determine the component proportions of the toluene reference fuel. Moreover, a new reduced mechanism of the toluene reference fuel is proposed and validated by using shock tube ignition delay and in-cylinder pressure in a homogeneous charge compression ignition engine. The toluene reference fuel mechanism coupled with third-order model is used to simulate the ignition delay of American gasoline (RD387) and the homogeneous charge compression ignition combustion behaviors of European gasoline (ULG95). Both cases are simulated thoroughly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.