Metal-halide perovskites have rapidly
emerged as one of the most
promising materials of the 21st century, with many exciting properties
and great potential for a broad range of applications, from photovoltaics
to optoelectronics and photocatalysis. The ease with which metal-halide
perovskites can be synthesized in the form of brightly luminescent
colloidal nanocrystals, as well as their tunable and intriguing optical
and electronic properties, has attracted researchers from different
disciplines of science and technology. In the last few years, there
has been a significant progress in the shape-controlled synthesis
of perovskite nanocrystals and understanding of their properties and
applications. In this comprehensive review, researchers having expertise
in different fields (chemistry, physics, and device engineering) of
metal-halide perovskite nanocrystals have joined together to provide
a state of the art overview and future prospects of metal-halide perovskite
nanocrystal research.
The growing demand for perovskite nanocrystals (NCs) for various applications has stimulated the development of facile synthetic methods. Perovskite NCs have often been synthesized by either ligand‐assisted reprecipitation (LARP) at room temperature or by hot‐injection at high temperatures and inert atmosphere. However, the use of polar solvents in LARP affects their stability. Herein, we report on the spontaneous crystallization of perovskite NCs in nonpolar organic media at ambient conditions by simple mixing of precursor–ligand complexes without application of any external stimuli. The shape of the NCs can be controlled from nanocubes to nanoplatelets by varying the ratio of monovalent (e.g. formamidinium+ (FA+) and Cs+) to divalent (Pb2+) cation–ligand complexes. The precursor–ligand complexes are stable for months, and thus perovskite NCs can be readily prepared prior to use. Moreover, we show that this versatile synthetic process is scalable and generally applicable for perovskite NCs of different compositions.
Semiconductor nanorods (NRs) offer the useful property of linearly polarized light emission. While this would be an attractive functionality for strongly emitting perovskite nanoparticles, to date, there has been limited success in demonstrating a direct chemical synthesis of cesium lead halide perovskite NRs. In this work, we realized the direct synthesis of CsPbBr 3 NRs with an average width of around 5 nm and average lengths of 10.8 and 23.2 nm, respectively, in two samples, which show a high photoluminescence quantum yield of 60−76% and reasonably high emission anisotropy of about 0.2 for longer rods. Both CsPbCl 3 and CsPbI 3 NRs with similar dimensions have then been derived from the CsPbBr 3 NRs by anion-exchange reactions. Remarkably, the synthesis of the NRs has been achieved in polar alcohols, a class of solvents not usually found to be beneficial in classical perovskite nanoparticle synthesis. This work not only offers the possibility to control the shape of chemically synthesized perovskite nanocrystals but also constitutes the hitherto less common strategy of synthesizing perovskite nanoparticles in polar rather than nonpolar or only weakly polar solvents.
Colloidal gold nanoparticles (GNPs) serve as promising contrast agents in photoacoustic (PA) imaging, yet their utility is limited due to their absorption peak in the visible window overlapping with that of hemoglobin. To overcome such limitation, this report describes an ultrapure chain-like gold nanoparticle (CGNP) clusters with a redshift peak wavelength at 650 nm. The synthesized CGNP show an excellent biocompatibility and photostability. These nanoparticles are conjugated with arginine-glycine-aspartic acid (RGD) peptides (CGNP clusters-RGD) and validated in 12 living rabbits to perform multimodal photoacoustic microscopy (PAM) and optical coherence tomography (OCT) for visualization of newly developed blood vessels in the sub-retinal pigment epithelium (RPE) space of the retina, named choroidal neovascularization (CNV). The PAM system can achieve a 3D PAM image via a raster scan of 256 × 256 pixels within a time duration of 65 s. Intravenous injection of CGNP clusters-RGD bound to CNV and resulted in up to a 17-fold increase in PAM signal and 176% increase in OCT signal. Histology indicates that CGNP clusters could disassemble, which may facilitate its clearance from the body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.