Permeation grouting is widely used in grouting engineering because of its low grouting pressure and minor disturbance to the stratum. However, influenced by the complex properties of sand layer and slurry, an accurate prediction of the groutability of the sand layer remains to be a hard work. In this paper, the permeability of sand layer is studied based on a self-designed permeation grouting test device, which considers the different sand particle size, relative density of sand layer, slurry water-cement ratio, and clay content. The influencing factors of sand layer groutability are analyzed, and the different parameters that affect the grouting of sand layer are evaluated, thus proposing a new approach to predict the groutability of sand layer. Results show that the sand particle size and slurry water-cement ratio are positively related to the groutability of sand layer, and the relative density and clay content of sand layer are negatively correlated with the groutability of sand layer. The proposed alternative empirical formula to estimate the groutability of sand layer will help predict the groutability of sand layer with a higher degree of accuracy, which can provide a certain reference for engineering.
To study the penetration mechanism of cement-based slurry in intersected fractures during grouting and the related pressure distribution, we have used two different variants of cement, namely, basic cement slurry and fast-setting cement slurry. The influence of a retarder, time-varying viscosity, fracture width and location of injection hole is also considered. A finite element software is used to implement two and threedimensional numerical models for grouting of intersected fractures in hydrostatic conditions. Results show that there are significant differences in the diffusion morphology and pressure distribution depending on the considered cement slurry. Retarder can effectively slow down the rising rate of injection pressure and extend the diffusion distance of grout. The influence of the branch fracture is more important when basic cement slurry is considered, indicating that the change of grout pressure is correlated with the slurry viscosity. The faster the viscosity increases, the less evident is the effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.