Hereditary cholestasis in childhood and infancy with normal serum gamma‐glutamyltransferase (GGT) activity is linked to several genes. Many patients, however, remain genetically undiagnosed. Defects in myosin VB (MYO5B; encoded by MYO5B) cause microvillus inclusion disease (MVID; MIM251850) with recurrent watery diarrhea. Cholestasis, reported as an atypical presentation in MVID, has been considered a side effect of parenteral alimentation. Here, however, we report on 10 patients who experienced cholestasis associated with biallelic, or suspected biallelic, mutations in MYO5B and who had neither recurrent diarrhea nor received parenteral alimentation. Seven of them are from two study cohorts, together comprising 31 undiagnosed low‐GGT cholestasis patients; 3 are sporadic. Cholestasis in 2 patients was progressive, in 3 recurrent, in 2 transient, and in 3 uncategorized because of insufficient follow‐up. Liver biopsy specimens revealed giant‐cell change of hepatocytes and intralobular cholestasis with abnormal distribution of bile salt export pump (BSEP) at canaliculi, as well as coarse granular dislocation of MYO5B. Mass spectrometry of plasma demonstrated increased total bile acids, primary bile acids, and conjugated bile acids, with decreased free bile acids, similar to changes in BSEP‐deficient patients. Literature review revealed that patients with biallelic mutations predicted to eliminate MYO5B expression were more frequent in typical MVID than in isolated‐cholestasis patients (11 of 38 vs. 0 of 13). Conclusion: MYO5B deficiency may underlie 20% of previously undiagnosed low‐GGT cholestasis. MYO5B deficiency appears to impair targeting of BSEP to the canalicular membrane with hampered bile acid excretion, resulting in a spectrum of cholestasis without diarrhea. (Hepatology 2017;65:1655‐1669).
Integrins are the adhesion molecules and receptors of extracellular matrix (ECM). They mediate the interactions between cells-cells and cells-ECM. The crosstalk between cancer cells and their microenvironment triggers a variety of critical signaling cues and promotes the malignant phenotype of cancer. As a type of transmembrane protein, integrin-mediated cell adhesion is essential in regulating various biological functions of cancer cells. Recent evidence has shown that integrins present on tumor cells or tumorassociated stromal cells are involved in ECM remodeling, and as mechanotransducers sensing changes in the biophysical properties of the ECM, which contribute to cancer metastasis, stemness and drug resistance. In this review, we outline the mechanism of integrin-mediated effects on biological changes of cancers and highlight the current status of clinical treatments by targeting integrins.
Exosomes play critical roles in regulating various physiological and pathological processes, including immune stimulation, immune suppression, cardiovascular diseases, and cancers. Recent studies show that exosomes that transport specific microRNAs (miRNAs) are involved in tumor development. However, the molecular mechanism by which tumor invasion and migration are regulated by exosomes from non-small cell lung cancer (NSCLC) is not well understood. Here, we show that exosomes shuttling low levels of miR-34c-3p are involved in NSCLC progression. Our results showed that exosomes derived from NSCLC cells carrying low levels of miR-34c-3p could be transported into the cytoplasm of NSCLC cells and accelerate NSCLC invasion and migration by upregulating integrin α2β1. A luciferase assay revealed that integrin α2β1 was the direct target of miR-34c-3p, and overexpression of integrin α2β1 could promote the invasion and migration of NSCLC cells. The analysis of exosomes derived from clinical serum samples indicated that the expression of miR-34c-3p was significantly downregulated in exosomes from NSCLC patients compared with that of normal controls. A549-derived exosomes promoted NSCLC cells lung metastases in vivo. Exosomes shuttling low levels of miR-34c-3p were associated with the progression of NSCLC in vitro and in vivo. Our data demonstrate that exosomes shuttling low levels of miR-34c-3p can accelerate the invasion and migration of NSCLC by upregulating integrin α2β1. MiR-34c-3p can be a diagnostic and prognostic marker for NSCLC. High expression of integrin α2β1 is positively related to the migration and metastasis of NSCLC cells.
Complex biological processes such as plant growth and development are often under the control of transcription factors that regulate the expression of large sets of genes and activate subordinate transcription factors in a cascade-like fashion. Here, by screening candidate photosynthesis-related transcription factors in rice, we identified a DREB (Dehydration Responsive Element Binding) family member, OsDREB1C, in which expression is induced by both light and low nitrogen status. We show that OsDREB1C drives functionally diverse transcriptional programs determining photosynthetic capacity, nitrogen utilization, and flowering time. Field trials with OsDREB1C -overexpressing rice revealed yield increases of 41.3 to 68.3% and, in addition, shortened growth duration, improved nitrogen use efficiency, and promoted efficient resource allocation, thus providing a strategy toward achieving much-needed increases in agricultural productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.