While it is well understood that the emerging Social Internet of Things offers the capability of effectively integrating and managing massive heterogeneous IoT objects, it also presents new challenges for suggesting useful objects with certain service for users due to complex relationships in Social Internet of Things, such as user’s object usage pattern and various social relationships among Social Internet of Things objects. In this study, we focus on the problem of service recommendation in Social Internet of Things, which is very important for many applications such as urban computing, smart cities, and health care. We propose a graph-based service recommendation framework by jointly considering social relationships of heterogeneous objects in Social Internet of Things and user’s preferences. More exactly, we learn user’s preference from his or her object usage events with a latent variable model. Then, we model users, objects, and their relationships with a knowledge graph and regard Social Internet of Things service recommendation as a knowledge graph completion problem, where the “like” property that connects users to services needs to be predicted. To demonstrate the utility of the proposed model, we have built a Social Internet of Things testbed to validate our approach and the experimental results demonstrate its feasibility and effectiveness.
While it is well understood that the Internet of things (IoT) can facilitate numerous applications (e.g., environmental supervision, forest fire prevention and Intelligent farming), it also brings a significant challenge for efficiently selecting sensors that meet users' preference and specific requirement from millions of heterogeneous sensors. In this paper, we propose an improved fast nondominated sorting algorithm for efficiently preference-based sensor selection in IoT. Specifically, this proposed method mainly includes three parts: 1) Offline constructing R-tree to search sensor resources and narrowing the size of dataset according to user's preference; 2) Using an improved fast nondominated sorting approach to get nondominated front; 3) Employing TOPSIS to characterize every sensor option of the nondominated front. In order to illustrate the usability of the model, we conduct experiments on several simulation datasets. Experimental results show that this method outperforms several baselines in terms of both response time and accuracy.
In the past few years, introducing ontology to describe the concepts and relationships between different entities in semantic sensor network enhances the interoperability between entities. Existing works mostly based on SPARQL retrieval ignore the user’s specific requirements of sensor attributes. Therefore, the recommendation results cannot satisfy the user’s needs. In this article, we propose a graph-based sensor recommendation model. The model mainly includes two parts: (1) Filtering nodes in data graph. In addition to using the traditional graph matching algorithm, we propose a threshold pruning algorithm to narrow the matching scope and improve the matching efficiency. (2) Recommending top- k sensors. We use the improved fast non-dominated sorting algorithm to obtain the local optimal solutions of sensor data set, and we apply the simple additive weight algorithm to characterize and sort local optional solutions. Finally, we recommend the top- k sensors to the user. By comparison, the graph-based sensor recommendation algorithm meets user’s needs more than other algorithms, and experiments show that our model outperforms several baselines in terms of both response time and precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.