Aims The optimal strategy for persistent atrial fibrillation (PerAF) is poorly defined. We conducted a multicentre, randomized, prospective trial to compare the outcomes of different ablation strategies for PerAF. Methods and results We enrolled 450 patients and randomly assigned them in a 1:1:1 ratio to undergo pulmonary vein isolation and subsequently undergo the following three different ablation strategies: anatomical guided ablation (ANAT group, n = 150), electrogram guided ablation (EGM group, n = 150), and extensive electro-anatomical guided ablation (EXT group, n = 150). The primary endpoint was freedom from atrial fibrillation (AF) lasting longer than 30 s at 12 months after a single ablation procedure. After 12 months of follow-up, 72% (108) of patients in the EXT group were free from AF recurrence, as compared with the 64% (96) in the EGM group (P = 0.116), and 54% (81) in the ANAT group (P = 0.002). The EXT group showed less AF/atrial tachycardia recurrence than the EGM group (60% vs. 50%, P = 0.064) and the ANAT group (60% vs. 37.3%, P < 0.001). The EXT group showed the highest rate of AF termination (66.7%), followed by 56.7% in the EGM group, and 20.7% in the ANAT group. The AF termination signified less AF recurrence at 12 months compared to patients without AF termination (30.1% vs. 42.7%, P = 0.008). Safety endpoints did not differ significantly between the three groups (P = 0.924). Conclusions Electro-anatomical guided ablation achieved the most favourable outcomes among the three ablation strategies. The AF termination is a reliable ablation endpoint.
Purpose. Atrial fibrillation (AF) is the most frequent arrhythmia in clinical practice. The pathogenesis of AF is not yet clear. Therefore, exploring the molecular information of AF displays much importance for AF therapy. Methods. The GSE2240 data were acquired from the Gene Expression Omnibus (GEO) database. The R limma software package was used to screen DEGs. Based on the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) databases, we conducted the functions and pathway enrichment analyses. Then, the STRING and Cytoscape software were employed to build Protein-Protein Interaction (PPI) network and screen for hub genes. Finally, we used the Cell Counting Kit-8 (CCK-8) experiment to explore the effect of hub gene knockdown on the proliferation of AF cells. Result. 906 differentially expressed genes (DEGs), including 542 significantly upregulated genes and 364 significantly downregulated genes, were screened in AF. The genes of AF were mainly enriched in vascular endothelial growth factor-activated receptor activity, alanine, regulation of histone deacetylase activity, and HCM. The PPI network constructed of significantly upregulated DEGs contained 404 nodes and 514 edges. Five hub genes, ASPM, DTL, STAT3, ANLN, and CDCA5, were identified through the PPI network. The PPI network constructed by significantly downregulated genes contained 327 nodes and 301 edges. Four hub genes, CDC42, CREB1, AR, and SP1, were identified through this PPI network. The results of CCK-8 experiments proved that knocking down the expression of CDCA5 gene could inhibit the proliferation of H9C2 cells. Conclusion. Bioinformatics analyses revealed the hub genes and key pathways of AF. These genes and pathways provide information for studying the pathogenesis, treatment, and prognosis of AF and have the potential to become biomarkers in AF treatment.
This paper presents an in-depth study and analysis of the 3D arterial centerline in spiral CT coronary angiography, and constructs its detection and extraction technique. The first time, the distance transform is used to complete the boundary search of the original figure; the second time, the distance transform is used to calculate the value of the distance transform of all voxels, and according to the value of the distance transform, unnecessary voxels are deleted, to complete the initial contraction of the vascular region and reduce the computational consumption in the next process; then, the nonwitnessed voxels are used to construct the maximum inner joint sphere model and find the skeletal voxels that can reflect the shape of the original figure. Finally, the skeletal lines were optimized on these initially extracted skeletal voxels using a dichotomous-like principle to obtain the final coronary artery centerline. Through the evaluation of the experimental results, the algorithm can extract the coronary centerline more accurately. In this paper, the segmentation method is evaluated on the test set data by two kinds of indexes: one is the index of segmentation result evaluation, including dice coefficient, accuracy, specificity, and sensitivity; the other is the index of clinical diagnosis result evaluation, which is to refine the segmentation result for vessel diameter detection. The results obtained in this paper were compared with the physicians’ labeling results. In terms of network performance, the Dice coefficient obtained in this paper was 0.89, the accuracy was 98.36%, the sensitivity was 93.36%, and the specificity was 98.76%, which reflected certain advantages in comparison with the advanced methods proposed by previous authors. In terms of clinical evaluation indexes, by performing skeleton line extraction and diameter calculation on the results obtained by the segmentation method proposed in this paper, the absolute error obtained after comparing with the diameter of the labeled image was 0.382 and the relative error was 0.112, which indicates that the segmentation method in this paper can recover the vessel contour more accurately. Then, the results of coronary artery centerline extraction with and without fine branch elimination were evaluated, which proved that the coronary artery centerline has higher accuracy after fine branch elimination. The algorithm is also used to extract the centerline of the complete coronary artery tree, and the results prove that the algorithm has better results for the centerline extraction of the complete coronary vascular tree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.