In this paper, we consider two univariate time series models of predicting the dynamics of the exchange rate (using mid-rate data) of the Ghana cedi to the US dollar over a 10year 2months period from January 2004, to February 2015. We consider out-of-sample forecast for the next three years of the exchange rate. The time series models considered for this objective are the Autoregressive Integrated Moving Average (ARIMA) and the Random walk model. We find modest differences between these two models based on the out-of-sample forecast. Interestingly, both models perform similarly based on forecast values. Forecast values shows that the exchange rate of the Ghana cedi to the American dollar will increase continuously in the next three (3) years.
Using market covered European call option prices, the Independence Metropolis-Hastings Sampler algorithm for estimating Implied volatility in option pricing was proposed. This algorithm has an acceptance criteria which facilitate accurate approximation of this volatility from an independent path in the Black Scholes Model, from a set of finite data observation from the stock market. Assuming the underlying asset indeed follow the geometric brownian motion, inverted version of the Black Scholes model was used to approximate this Implied Volatility which was not directly seen in the real market: for which the BS model assumes the volatility to be a constant. Moreover, it is demonstrated that, the Implied Volatility from the options market tends to overstate or understate the actual expectation of the market. In addition, a 3-month market Covered European call option data, from 30 different stock companies was acquired from Optionistic.Com, which was used to estimate the Implied volatility. This accurately approximate the actual expectation of the market with low standard errors ranging between 0.0035 to 0.0275.
We revise some mathematical morphological operators such as Dilation, Erosion, Opening and Closing. We show proofs of our theorems for the above operators when the structural elements are partitioned. Our results show that structural elements can be partitioned before carrying out morphological operations.
Mathematical Morphological concepts outline techniques for analysing and processing geometric structures based on set theory. In this paper, we present proofs of our theorems on morphological distributive properties over Unions and Intersections with respect to Dilation and Erosion. These results provide new realizations of Dilation, Erosion and conclude that they are distributive over Unions but non-distributive over Intersections.
This paper focuses on the study of a one-dimensional topological dynamical system, the tent function. We give a good background to the theory of dynamical systems while establishing the important asymptotic properties of topological dynamical systems that distinguishes it from other fields by way of an example - the tent function. A precise definition of the tent function is given and iterates are clearly shown using the phase diagrams. By this same method, chaos in the tent map is shown as iterates become higher. We also show that the tent map has infinitely many chaotic orbits and also express some important features of chaos such as topological transitivity, boundedness and sensitivity to change in initial conditions from a topological viewpoint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.