Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning model (ML/DL)-based electroencephalogram (EEG) methods. Importantly, EEG’s noninvasiveness and ability to offer repeated patterns of epileptic-related electrophysiological information have motivated the development of varied ML/DL algorithms for epileptic seizure diagnosis in the recent years. However, EEG’s low amplitude and nonstationary characteristics make it difficult for existing ML/DL models to achieve a consistent and satisfactory diagnosis outcome, especially in clinical settings, where environmental factors could hardly be avoided. Though several recent works have explored the use of EEG-based ML/DL methods and statistical feature for seizure diagnosis, it is unclear what the advantages and limitations of these works are, which might preclude the advancement of research and development in the field of epileptic seizure diagnosis and appropriate criteria for selecting ML/DL models and statistical feature extraction methods for EEG-based epileptic seizure diagnosis. Therefore, this paper attempts to bridge this research gap by conducting an extensive systematic review on the recent developments of EEG-based ML/DL technologies for epileptic seizure diagnosis. In the review, current development in seizure diagnosis, various statistical feature extraction methods, ML/DL models, their performances, limitations, and core challenges as applied in EEG-based epileptic seizure diagnosis were meticulously reviewed and compared. In addition, proper criteria for selecting appropriate and efficient feature extraction techniques and ML/DL models for epileptic seizure diagnosis were also discussed. Findings from this study will aid researchers in deciding the most efficient ML/DL models with optimal feature extraction methods to improve the performance of EEG-based epileptic seizure detection.
The connection between emotional states and physical health has attracted widespread attention. The emotional stress assessment can help healthcare professionals figure out the patient's engagement toward the diagnostic plan and optimize the rehabilitation program as feedback. It is of great significance to study the changes of physiological features in the process of emotional change and find out subset of one or several physiological features that can best represent the changes of psychological state in a statistical sense. Previous studies had used the differences in physiological features between discrete emotional states to select feature subsets. However, the emotional state of the human body is continuously changing. The conventional feature selection methods ignored the dynamic process of an individual's emotional stress in real life. Therefore, a dedicated experimental was conducted while three peripheral physiological signals, i.e., ElectroCardioGram (ECG), Galvanic Skin Resistance (GSR), and Blood Volume Pulse (BVP), were continuously acquired. This paper reported a novel feature selection method based on emotional state transition, the experimental results show that the number of physiological features selected by the proposed method in this paper is 13, including 5 features of ECG, 4 features of PPG and 4 features of GSR, respectively, which are superior to PCA method and conventional feature selection method based on discrete emotional states in terms of dimension reduction. The classification results show that the accuracy of the proposed method in emotion recognition based on ECG and PPG is higher than the other two methods. These results suggest that the proposed method can serve as a viable alternative to conventional feature selection methods, and emotional state transition deserves more attention to promote the development of stress assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.