This review paper describes the applications of dental optical coherence tomography (OCT) in oral tissue images, caries, periodontal disease and oral cancer. The background of OCT, including basic theory, system setup, light sources, spatial resolution and system limitations, is provided. The comparisons between OCT and other clinical oral diagnostic methods are also discussed.
BackgroundAlthough Monte Carlo simulations of light propagation in full segmented three-dimensional MRI based anatomical models of the human head have been reported in many articles. To our knowledge, there is no patient-oriented simulation for individualized calibration with NIRS measurement. Thus, we offer an approach for brain modeling based on image segmentation process with in vivo MRI T1 three-dimensional image to investigate the individualized calibration for NIRS measurement with Monte Carlo simulation.MethodsIn this study, an individualized brain is modeled based on in vivo MRI 3D image as five layers structure. The behavior of photon migration was studied for this individualized brain detections based on three-dimensional time-resolved Monte Carlo algorithm. During the Monte Carlo iteration, all photon paths were traced with various source-detector separations for characterization of brain structure to provide helpful information for individualized design of NIRS system.ResultsOur results indicate that the patient-oriented simulation can provide significant characteristics on the optimal choice of source-detector separation within 3.3 cm of individualized design in this case. Significant distortions were observed around the cerebral cortex folding. The spatial sensitivity profile penetrated deeper to the brain in the case of expanded CSF. This finding suggests that the optical method may provide not only functional signal from brain activation but also structural information of brain atrophy with the expanded CSF layer. The proposed modeling method also provides multi-wavelength for NIRS simulation to approach the practical NIRS measurement.ConclusionsIn this study, the three-dimensional time-resolved brain modeling method approaches the realistic human brain that provides useful information for NIRS systematic design and calibration for individualized case with prior MRI data.
The goal of this study is to prove that the light propagation in the head by used the 3-D optical model from in vivo MRI data set can also provide significant characteristics on the spatial sensitivity of cerebral cortex folding geometry based on Monte Carlo simulation. Thus, we proposed a MRI based approach for 3-D brain modeling of near-infrared spectroscopy (NIRS). In the results, the spatial sensitivity profile of the cerebral cortex folding geometry and the arrangement of source-detector separation have being necessarily considered for applications of functional NIRS. The optimal choice of source-detector separation is suggested within 3-3.5 cm by the received intensity with different source-detector separations and the ratio of received light from the gray and white matter layer is greater than 50%. Additionally, this study has demonstrated the capability of NIRS in not only assessing the functional but also detecting the structural change of the brain by taking advantage of the low scattering and absorption coefficients observed in CSF of sagittal view.
Near-infrared spectroscopy (NIRS) is a noninvasive method for measuring the oxygenation in muscle and other tissues in vivo. For quantitative NIRS measurement of oxygenation dynamics, the vessel-occlusion test was usually applied as physiological intervention. There are several drawbacks of the vessel-occlusion method that include skin contact, uncomfortable and microcirculation block of patients. Thus, we propose the far-infrared (FIR) illumination as a new physiological intervention method in this paper. Our preliminary result shows a linear correlation of oxygenation dynamic signals between FIR illumination and arterial-occlusion test (AOT) that implies the FIR illumination could be applied for hemodynamic response measurement in clinical diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.