This contribution addresses an analytical model to predict the ignition time of PMMA (Polymethyl methacrylate) subjected to a time-decreasing incident heat flux. Surface temperature, transient mass flux and ignition time of PMMA are thoroughly studied based on the exact solutions of in-depth temperature. Critical mass flux is utilized as the ignition criteria. An approximation methodology is suggested to simplify the unsolvable high order equations and deduce the explicit expressions of ignition time. A numerical model is employed to validate the capability of the developed model. The results show that no ignition occurs when the decreasing rate of heat flux increases larger than a critical value. The agreement of the transient mass flux between analytical and numerical models is good at high decreasing rate but turns worse as the decreasing rate declines. However, this enhanced discrepancy affects the ignition time prediction slightly. The inverse of the square root of the ignition time is linearly correlated with the decreasing rate of heat flux, and it becomes significantly sensitive to the decreasing rate when the decreasing rate approaching its critical value. Meanwhile, the value of critical mass flux has appreciable influence on the ignition time prediction.
Crosslinked copolymers and IPNs were synthesized from vegetable oils (e.g., cottonseed oil, castor oil, and tung oil). The dynamic mechanical behavior of the polymer blends was studied by Dynamic Mechanical Spectroscopy (DMS). The tan ␦-temperature curves of these kinds of copolymers and IPNs show a single peak, which indicate good compatibility. They represent a kind of damping materials with high tan ␦ values over wide temperature ranges. Thus a new way has been found to use natural products of agriculture to produce damping materials. Effects of various factors on the dynamic mechanical behavior were studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.