The mammalian target of rapamycin (mTOR) signaling pathway in pulmonary fibrosis was investigated in cell and animal models. mTOR overactivation in alveolar epithelial cells (AECs) was achieved in the conditional and inducible Tsc1 knock-down mice SPC-rtTA/TetO-Cre/Tsc1
fx/+ (STT). Doxycycline caused Tsc1 knock-down and consequently mTOR activation in AECs for the STT mice. Mice treated with bleomycin exhibited increased mortality and pulmonary fibrosis compared with control mice. In wild-type C57BL/6J mice, pretreatment with rapamycin attenuated the bleomycin-mediated mortality and fibrosis. Rapamycin-mediated mouse survival benefit was inhibited by chloroquine, an autophagy inhibitor. Autophagosomes were decreased in the lungs after bleomycin exposure. Rapamycin induced the production of autophagosomes and diminished p62. We concluded that mTOR overactivation in AECs and compromised autophagy in the lungs are involved in the pathogenesis of pulmonary fibrosis. The suppression of mTOR and enhancement of autophagy may be used for treatment of pulmonary fibrosis.
This is a study on the role of tuberous sclerosis complex1 (TSC1) mutation and mTOR activation in endothelial cells during angiogenic and embryonic development. Past studies had shown that Tsc1/Tsc2 mutant genes lead to overactivation of mTOR in the regulating pathways in developing fetus. We used conditional Cre-loxp gene knockout approach to delete Tsc1 in mice's endothelial cells in our experimental models. Similarly, activation of mTOR signaling in endothelial cells of these embryos (Tie2-Cre/Tsc1(-/-)) was found. Majority of Tie2-Cre/Tsc1(-/-) embryos died at embryonic day 14.5 in utero. Cardiovascular defects, subcutaneous edema and hemorrhage were present among them. Whole-mount immunostaining in these embryos revealed a disorganized vascular network, defective sprouting of vessels in yolk sac and thickening of the labyrinth layer in the placenta. A thinner ventricular wall with disorganized trabeculae was present in the hearts of Tie2-Cre/Tsc1(-/-) embryos. Endothelial cells in Tsc1-deficient mice showed defective mitochondrial and endoplasmic reticular morphology, but no significant change was observed in cell junctions. The mutant embryos displayed significantly reduced cell proliferation, increased apoptosis and disturbed expression of angiogenic factors. A cohort of mice was treated prenatally with mTOR inhibitor rapamycin. The offspring of these mutant mice survived up to 22 days after birth. It was concluded that physiological TSC1-mTOR signaling in endothelial cells is crucial for vascular development and embryogenesis. We postulated that disruption of normal angiogenic pathways through hyperactive mTOR signaling maybe the mechanism that lead to deranged vascular pathogenesis in the tuberous sclerosis complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.