Abstract. Since September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2)
satellite has been taking measurements of reflected solar spectra and using
them to infer atmospheric carbon dioxide levels. This work provides details
of the OCO-2 retrieval algorithm, versions 7 and 8, used to derive the
column-averaged dry air mole fraction of atmospheric CO2
(XCO2) for the roughly 100 000 cloud-free measurements recorded
by OCO-2 each day. The algorithm is based on the Atmospheric Carbon
Observations from Space (ACOS) algorithm which has been applied to
observations from the Greenhouse Gases Observing SATellite (GOSAT) since
2009, with modifications necessary for OCO-2. Because high accuracy,
better than 0.25 %, is required in order to accurately infer carbon
sources and sinks from XCO2, significant errors and regional-scale
biases in the measurements must be minimized. We discuss efforts to filter
out poor-quality measurements, and correct the remaining good-quality
measurements to minimize regional-scale biases. Updates to the radiance
calibration and retrieval forward model in version 8 have improved many
aspects of the retrieved data products. The version 8 data appear to have
reduced regional-scale biases overall, and demonstrate a clear improvement
over the version 7 data. In particular, error variance with respect to TCCON
was reduced by 20 % over land and 40 % over ocean between versions 7
and 8, and nadir and glint observations over land are now more consistent.
While this paper documents the significant improvements in the ACOS
algorithm, it will continue to evolve and improve as the CO2 data
record continues to expand.
Abstract. NASA's Orbiting Carbon Observatory-2 (OCO-2) has been measuring carbon dioxide column-averaged dryair mole fraction, X CO 2 , in the Earth's atmosphere for over 2 years. In this paper, we describe the comparisons between the first major release of the OCO-2 retrieval algorithm (B7r) and X CO 2 from OCO-2's primary ground-based validation network: the Total Carbon Column Observing Network (TC-CON). The OCO-2 X CO 2 retrievals, after filtering and bias correction, agree well when aggregated around and coincident with TCCON data in nadir, glint, and target observation modes, with absolute median differences less than 0.4 ppm and RMS differences less than 1.5 ppm. After bias correction, residual biases remain. These biases appear to depend on latitude, surface properties, and scattering by aerosols. It is thus crucial to continue measurement comparisons with TCCON to monitor and evaluate the OCO-2 X CO 2 data quality throughout its mission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.