The purposes of this study were to examine technical details in deriving and maintaining rabbit embryonic stem (rES) cell lines and to analyze their characteristics. When STO cells were used as feeder cells, no rES cell lines were established using either intact blastocysts or inner cell masses (ICMs). On the mouse embryonic fibroblasts (MEF) feeder, rES cell lines were efficiently (24%) derived. Addition of leukemia inhibitory factor (LIF) to the cells cultured on the MEF feeders further increased the derivation efficiency (57%) of rES cells. The fact that LIF induced serine-phosphorylation of STAT3 suggested LIF-dependent maintenance of rES cells. Most of the rES cell lines expressed AP, SSEA-4, Oct4, TRA-1-60, and TRA-1-81. Western blot or RT-PCR analysis also confirmed the expression of Oct4, Nanog, and Sox2. When induced to form EBs in vitro or injected to the severe combined immunodeficiency (SCID) mice, the rES cells generated embryoid bodies (EBs) and teratomas with three germ layers expressing the marker genes including MAP2, Desmin, and GATA4, respectively. In conclusion, rabbit ES cell lines can be efficiently established using our current protocols with LIF supplement. These ES cells express pluripotent stem cell markers and retain their capability to differentiate into different tissue cells. Furthermore, rES cells depend on LIF for self-renewal, likely via the JAK-STAT pathway.
Embryonic stem (ES) cells are pluripotent cells from the inner cell mass (ICM) of the blastocyst. They are capable of differentiating to various cell types, such as neural cells, cardiocytes, hepatic cells, and germ cells. The aim of this study was to establish rabbit ES cell lines as an animal model for human diseases. Blastocysts were collected from New Zealand White rabbits during Days 4 to 5 after breeding. After removal of the mucin coat and the zona pellucida by pronase, the embryos were directly cultured in ES cell medium on mitomycin C-treated mouse embryonic fibroblast (MEF) or STO feeder layers. In Experiment 1, the efficiencies of 2 different feeder layers, MEF and STO, in generating rabbit ES cell lines were compared. Six blastocysts were used for each STO and MEF feeder group. The primary ICM colonies were formed in 67% (4/6) of the cultures on the STO and 83% (5/6) on the MEF. Sixty percent of those primary colonies (3/5) were successfully grown into ES-like cell lines in the MEF feeder group. However, no cell lines were established on the STO feeder. In Experiment 2, whole blastocysts or ICMs isolated by immunosurgery were cultured to establish ES cell lines. A total of 21 blastocysts were recovered from 2 does. Eighteen whole blastocysts and 3 isolated ICMs were cultured on the MEF feeders. Twelve (67%) of the cultured whole blastocysts formed primary ICM colonies, of which 5 (42%) of the cultures continuously propagated and formed ES-like cell lines. In the immunosurgical group, 2 of the 3 isolated ICMs formed primary colonies but only 1 ES-like cell line was established. A total of 9 ES-like cell lines maintained morphological undifferentiation after 14 passages and expressed alkaline phosphatase activity. Seven of the 9 ES-like cells expressed Oct-4 and the stage-specific embryonic antigen-4 (SSEA-4) as detected by immunocytochemical staining. Two cell lines were further induced to differentiate into embryoid bodies in suspension culture. Another 3 cell lines were injected into SCID mice and one of them formed a teratoma. The competence of generating chimeric rabbits and the teratogenicity of the established ES-like cell lines are under evaluation. In conclusion, rabbit ES-like cells were efficiently generated and whole-blastocyst culturing on the MEF feeder appeared to be a preferred method for the isolation and maintenance of rabbit ES-like cell lines.
The objectives of this study were to establish and characterize rabbit ES cells lines. Blastocysts were collected from New Zealand White rabbits during Days 4 to 5 post-mating. After removal of the mucin coat and the zona pellucida by pronase, embryos were directly cultured in ES cell medium on the mitomycin C-treated mouse embryonic fibroblast (MEF) feeder. In trial 1, seventy-one blastocysts collected from five rabbits were randomly allocated to two treatment groups (with or without leukemia inhibitory factor, LIF). The primary ICM colonies were formed in 85.7% ( RT-PCR, the Sox2 gene expression was weakly detected in some cell lines. Three cell lines were further induced to differentiate into embryoid bodies and ectodermal development was detected by histological examination. Another four cell lines were injected to SCID mice and tumorigenesis with three germ layers was also detected. In conclusion, presumptive New Zealand White rabbit ES cells can be established using our current protocols which can be longterm cultured on MEF feeders in medium containing LIF. Those ES cells express pluripotent stem cell makers and maintain the ability to differentiate into different tissue cells. Differentiation of these cell lines into specific cell types, such as pancreatic cells for treatment of diabetes and other disease models is undergoing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.