-Cardiac dysfunction is a major component of sepsis-induced multi-organ failure in critical care units. Changes in cardiac autophagy and its role during sepsis pathogenesis have not been clearly defined. Targeted autophagy-based therapeutic approaches for sepsis are not yet developed. -Beclin-1-dependent autophagy in the heart during sepsis and the potential therapeutic benefit of targeting this pathway were investigated in a mouse model of lipopolysaccharide (LPS)-induced sepsis. -LPS induced a dose-dependent increase in autophagy at low doses, followed by a decline that was in conjunction with mTOR activation at high doses. Cardiac-specific overexpression of Beclin-1 promoted autophagy, suppressed mTOR signaling, improved cardiac function, and alleviated inflammation and fibrosis after LPS challenge. Haplosufficiency for resulted in opposite effects. Beclin-1 also protected mitochondria, reduced the release of mitochondrial DAMPs, and promoted mitophagy via PINK1-Parkin but not adaptor proteins in response to LPS. Injection of a cell-permeable Tat-Beclin-1 peptide to activate autophagy improved cardiac function, attenuated inflammation, and rescued the phenotypes caused by deficiency in LPS-challenged mice. -These results suggest that Beclin-1 protects the heart during sepsis and that the targeted induction of Beclin-1 signaling may have important therapeutic potential.
The mitochondrion is essential for energy metabolism and production of reactive oxygen species (ROS). In intact cells, respiratory mitochondria exhibit spontaneous "superoxide flashes", the quantal ROS-producing events consequential to transient mitochondrial permeability transition (tMPT). Here we perform the first in vivo imaging of mitochondrial superoxide flashes and tMPT activity in living mice expressing the superoxide biosensor mt-cpYFP, and demonstrate their coupling to whole-body glucose metabolism. Robust tMPT/superoxide flash activity occurred in skeletal muscle and sciatic nerve of anesthetized transgenic mice. In skeletal muscle, imaging tMPT/superoxide flashes revealed labyrinthine three-dimensional networks of mitochondria that operate synchronously. The tMPT/ superoxide flash activity surged in response to systemic glucose challenge or insulin stimulation, in an apparently frequency-modulated manner and involving also a shift in the gating mode of tMPT. Thus, in vivo imaging of tMPTdependent mitochondrial ROS signals and the discovery of the metabolism-tMPT-superoxide flash coupling mark important technological and conceptual advances for the study of mitochondrial function and ROS signaling in health and disease.
Obesity is a major risk factor for type 2 diabetes and cardiovascular diseases. And overnutrition is a leading cause of obesity. After most nutrients are ingested, they are absorbed in the small intestine. Signals from β-catenin are essential to maintain development of the small intestine and homeostasis. In this study, we used a hyperphagia db/db obese mouse model and a high-fat diet (HFD)-induced obesity mouse model to investigate the effects of overnutrition on intestinal function and β-catenin signaling. The β-catenin protein was upregulated along with inactivation of glycogen synthase kinase (GSK)-3β in the intestines of both db/db and HFD mice. Proliferation of intestinal epithelial stem cells, villi length, nutrient absorption, and body weight also increased in both models. These changes were reversed by caloric restriction in db/db mice and by β-catenin inhibitor JW55 (a small molecule that increases β-catenin degradation) in HFD mice. Parallel, in vitro experiments showed that β-catenin accumulation and cell proliferation stimulated by glucose were blocked by the β-catenin inhibitor FH535. And the GSK-3 inhibitor CHIR98014 in an intestinal epithelial cell line increased β-catenin accumulation and cyclin D1 expression. These results suggested that, besides contribution to intestinal development and homeostasis, GSK-3β/β-catenin signaling plays a central role in intestinal morphological and functional changes in response to overnutrition. Manipulating the GSK-3β/β-catenin signaling pathway in intestinal epithelium might become a therapeutic intervention for obesity induced by overnutrition.
This review aimed to focus on the recent progress of the understanding of the role of phosphatidylinositol 3-kinase (PI3K) in polycystic ovary syndrome (PCOS). In recent years, it has been increasingly recognized that PI3K plays an important role in PCOS whose pathogenesis is unclear. However, research continues into revealing the details of how PI3Ks are involved in developing PCOS. Previous studies have shown that activation of the PI3K-protein kinase B (Akt) signaling pathway has important effects on insulin resistance and endometrial cancer. Knowledge of the action of PI3K in PCOS might provide valuable information to further validate the pathogenesis of PCOS and suggest new methods of treatment.
Histone deacetylases (HDACs) regulate fundamental biological processes such as cellular proliferation, differentiation, and survival via genomic and nongenomic effects. This study examined the importance of HDAC activity in the regulation of gene expression and differentiation of the developing mouse kidney. Class I HDAC1-3 and class II HDAC4, -7, and -9 genes are developmentally regulated. Moreover, HDAC1-3 are highly expressed in nephron precursors. Short term treatment of cultured mouse embryonic kidneys with HDAC inhibitors (HDACi) induced global histone H3 and H4 hyperacetylation and H3K4 hypermethylation. However, genome-wide profiling revealed that the HDAC-regulated transcriptome is restricted and encompasses regulators of the cell cycle, Wnt/-catenin, TGF-/Smad, and PI3K-AKT pathways. Further analysis demonstrated that base-line expression of key developmental renal regulators, including Osr1, Eya1, Pax2/8, WT1, Gdnf, Wnt9b, Sfrp1/2, and Emx2, is dependent on intact HDAC activity. Treatment of cultured embryonic kidney cells with HDACi recapitulated these gene expression changes, and chromatin immunoprecipitation assays revealed that HDACi is associated with histone hyperacetylation of Pax2/Pax8, Gdnf, Sfrp1, and p21. Gene knockdown studies demonstrated that HDAC1 and HDAC2 play a redundant role in regulation of Pax2/8 and Sfrp1 but not Gdnf. Long term treatment of embryonic kidneys with HDACi impairs the ureteric bud branching morphogenesis program and provokes growth arrest and apoptosis. We conclude that HDAC activity is critical for normal embryonic kidney homeostasis, and we implicate class I HDACs in the regulation of early nephron gene expression, differentiation, and survival.Kidney development depends on reciprocal inductive interactions between the metanephric mesenchyme (MM), 4 a specified region in the caudal intermediate mesoderm, and the ureteric bud (UB), an epithelial outgrowth from the Wolffian (nephric) duct (1-3). Recent years have witnessed significant progress in our understanding of the gene regulatory networks of early kidney development (3-6). For example, the Osr1/ Eya1/Pax2/Six/Sall/WT1/Hoxd11 gene regulatory network specifies the MM and is absolutely required for expression of glia-derived neurotrophic factor (Gdnf) (7,8). Gdnf, in turn, is essential for UB outgrowth and subsequent branching (9 -11).Gdnf acts via activation of a c-Ret/PI3K/ERK-dependent gene network (Wnt11, Spry1, Etv4, Etv5, Cxcr4, Myb, Met, and Mmp14) in UB tip cells to control the branching morphogenesis program (12-14). Various growth factor/receptor signaling pathways, including FGFs, bone morphogenic proteins, VEGF, semaphorins, hepatocyte growth factor, EGF, among others, share signaling components with the c-Ret pathway and are required for optimal metanephric growth and patterning (15)(16)(17)(18)(19)(20)(21)(22). Following induction of the MM, activation of the Wnt/-catenin signaling pathway plays a key role in nephrogenesis. Release of Wnt9b from the UB branches triggers a -catenindependent mo...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.