A high-speed Gaussian modulated continuous-variable quantum key distribution (CVQKD) with a local local oscillator (LLO) is experimentally demonstrated based on pilottone-assisted phase compensation. In the proposed scheme, the frequency-multiplexing and polarization-multiplexing techniques are used for the separate transmission and heterodyne detection between quantum signal and pilot tone, guaranteeing no crosstalk from strong pilot tone to weak quantum signal and different detection requirements of low-noise for quantum signal and high-saturation limitation for pilot tone. Moreover, compared with the conventional CVQKD based on homodyne detection, the proposed LLO-CVQKD scheme can measure X and P quadrature simultaneously using heterodyne detection without need of extra random basis selection. Besides, the phase noise, which contains the fast-drift phase noise due to the relative phase of two independent lasers and the slow-drift phase noise introduced by quantum channel disturbance, has been compensated experimentally in real time, so that a low level of excess noise with a 25km optical fiber channel is obtained for the achievable secure key rate of 7.04 Mbps in the asymptotic regime and 1.85 Mbps under the finite-size block of 10 7 .
Continuous-variable quantum key distribution (CVQKD) has potential advantages of high secret key rate, which is very suitable for high-speed metropolitan network application. However, the secret key rates of the reported CVQKD systems are only a few Mbps over typical transmission distance so far. Here, we address the fundamental experimental problems and demonstrate a single-carrier four-state CVQKD with sub-Gbps key rate within metropolitan area. In the demonstrated four-state CVQKD using local local oscillator, an ultra-low level of excess noise is obtained and a high efficient post-processing setup is designed for practically extracting the final secure keys. Thus, the achieved secret key rates are 190.54 Mbps, 137.76 Mbps and 52.48 Mbps using linear channel assuming security analysis method and 233.87 Mbps, 133.6 Mbps and 21.53 Mbps using semidefinite programming security analysis method over transmission distances of 5 km, 10 km and 25 km, respectively. This result increases the asymptotic secret key rate to sub-Gbps level, which is sufficient to achieve the one-time pad cryptographic task. Moreover, our work shows the road for future high-rate and large-scale CVQKD deployment in secure broadband metropolitan and access networks.
A high-rate continuous-variable quantum key distribution (CV-QKD) system based on high-order discrete modulation is experimentally investigated. With the help of the novel system scheme, effective digital signal processing (DSP) algorithms and advanced analytical security proof methods, the transmission results of 5.059 km, 10.314 km, 24.490 km, and 50.592 km are achieved for 1 GBaud optimized quantum signals. Correspondingly, the asymptotic secret key rates (SKRs) are 292.185 Mbps, 156.246 Mbps, 50.491 Mbps, and 7.495 Mbps for discrete Gaussian (DG) 64QAM, and 328.297 Mbps, 176.089 Mbps, 51.304 Mbps, and 9.193 Mbps for DG 256QAM, respectively. Under the same parameters, the achieved SKRs of DG 256QAM is almost same as ideal Gaussian modulation. In this case, the demonstrated high-rate discrete-modulated CV-QKD system has the application potential for high-speed security communication under tens of kilometers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.