Anaerobic oxidation of methane (AOM) is an important process for understanding the global flux of methane and its relation to the global carbon cycle. Although AOM is known to be coupled to reductions of sulfate, nitrite, and nitrate, evidence that AOM is coupled with extracellular electron transfer (EET) to conductive solids is relatively insufficient. Here, we demonstrate EET-dependent AOM in a biofilm anode dominated by Geobacter spp. and Methanobacterium spp. using carbon-fiber electrodes as the terminal electron sink. The steady-state current density was kept at 11.0 ± 1.3 mA/m2 in a microbial electrochemical cell, and isotopic experiments supported AOM-EET to the anode. Fluorescence in situ hybridization images and metagenome results suggest that Methanobacterium spp. may work synergistically with Geobacter spp. to allow AOM, likely by employing intermediate (formate or H2)-dependent inter-species electron transport. Since metal oxides are widely present in sedimentary and terrestrial environments, an AOM-EET niche would have implications for minimizing the net global emissions of methane.
Lead and manganese are regulated in drinking water due to their neurotoxicity. These elements have been reported to co-occur in drinking water systems, in accordance with the metal-scavenging properties of MnO 2 . To the extent that manganese is a driver of lead release, controlling it during water treatment may reduce lead levels. We investigated transport of lead and manganese at the tap in a full-scale distribution system: consistent with a cotransport phenomenon, the two metals were detected in the same colloidal size fraction by size-exclusion chromatography with multielement detection. We also studied the effect of manganese on lead release using a model distribution system: increasing manganese from 4 to 215 μg L −1 nearly doubled lead release. This effect was attributed primarily to deposition corrosion of lead by oxidized phases of manganese, and we used 16S rRNA sequencing to identify bacteria that may be relevant to this process. We explored the deposition corrosion mechanism by coupling pure lead with either MnO 2 -coated lead or pure lead exposed to MnO 2 in suspension; we observed galvanic currents in both cases. We attributed these to reduction of Mn(IV) under anaerobic conditions, and we attributed the additional current under aerobic conditions to oxygen reduction catalyzed by MnO 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.