Trust in automation, or more recently trust in autonomy, has received extensive research attention in the past three decades. The majority of prior literature adopted a “snapshot” view of trust and typically evaluated trust through questionnaires administered at the end of an experiment. This “snapshot” view, however, does not acknowledge that trust is a dynamic variable that can strengthen or decay over time. To fill the research gap, the present study aims to model trust dynamics when a human interacts with a robotic agent over time. The underlying premise of the study is that by interacting with a robotic agent and observing its performance over time, a rational human agent will update his/her trust in the robotic agent accordingly. Based on this premise, we develop a personalized trust prediction model and learn its parameters using Bayesian inference. Our proposed model adheres to three properties of trust dynamics characterizing human agents’ trust development process de facto and thus guarantees high model explicability and generalizability. We tested the proposed method using an existing dataset involving 39 human participants interacting with four drones in a simulated surveillance mission. The proposed method obtained a root mean square error of 0.072, significantly outperforming existing prediction methods. Moreover, we identified three distinct types of trust dynamics, the Bayesian decision maker, the oscillator, and the disbeliever, respectively. This prediction model can be used for the design of individualized and adaptive technologies.
The enormous efforts spent on collecting naturalistic driving data in the recent years has resulted in an expansion of publicly available traffic datasets, which has the potential to assist the development of the self-driving vehicles. However, we found that many of the attempts to utilize these datasets have failed in practice due to a lack of usability concern from the organizations that host these collected data. For example, extracting data associated with certain critical conditions from naturalistic driving data organized in chronological order may not be convenient for a vehicle engineer that doesn't have big data analytics experiences.To address the general usability challenges of these publicly available traffic datasets, we propose TrafficNet, a large-scale and extensible library of naturalistic driving scenarios, aiming at bridging the gap between research datasets and practically usable information for vehicle engineers and researchers. The proposed web-based driving scenario database preprocesses massive raw traffic data collected in chronological order into an organized scenario-based dataset by applying a set of categorization algorithms to label the naturalistic driving data with six different critical driving scenarios. TrafficNet opens not only the scenario library but also the source code of these categorization methods to the public, which will foster more sophisticated and accurate scenario-based categorization algorithms to advance the intelligent transportation research. The source code and the scenario database can be accessed at https://github.com/TrafficNet.
Evaluation and validation of complicated control systems are crucial to guarantee usability and safety. Usually, failure happens in some very rarely encountered situations, but once triggered, the consequence is disastrous. Accelerated Evaluation is a methodology that efficiently tests those rarelyoccurring yet critical failures via smartly-sampled test cases. The distribution used in sampling is pivotal to the performance of the method, but building a suitable distribution requires caseby-case analysis. This paper proposes a versatile approach for constructing sampling distribution using kernel method. The approach uses statistical learning tools to approximate the critical event sets and constructs distributions based on the unique properties of Gaussian distributions. We applied the method to evaluate the automated vehicles. Numerical experiments show proposed approach can robustly identify the rare failures and significantly reduce the evaluation time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.