No abstract
The Internet-of-Things (IoT) has quickly evolved to a new appified era where third-party developers can write apps for IoT platforms using programming frameworks. Like other appified platforms, e.g., the smartphone platform, the permission system plays an important role in platform security. However, design flaws in current IoT platform permission models have been reported recently, exposing users to significant harm such as break-ins and theft. To solve these problems, a new access control model is needed for both current and future IoT platforms. In this paper, we propose ContexIoT, a context-based permission system for appified IoT platforms that provides contextual integrity by supporting fine-grained context identification for sensitive actions, and runtime prompts with rich context information to help users perform effective access control. Context definition in ContexIoT is at the inter-procedure control and data flow levels, that we show to be more comprehensive than previous context-based permission systems for the smartphone platform. ContexIoT is designed to be backward compatible and thus can be directly adopted by current IoT platforms. We prototype ContexIoT on the Samsung SmartThings platform, with an automatic app patching mechanism developed to support unmodified commodity SmartThings apps. To evaluate the system's effectiveness, we perform the first extensive study of possible attacks on appified IoT platforms by reproducing reported IoT attacks and constructing new IoT attacks based on smartphone malware classes. We categorize these attacks based on lifecycle and adversary techniques, and build the first taxonomized IoT attack app dataset. Evaluating ContexIoT on this dataset, we find that it can effectively distinguish the attack context for all the tested apps. The performance evaluation on 283 commodity IoT apps shows that the app patching adds nearly negligible delay to the event triggering latency, and the permission request frequency is far below the threshold that is considered to risk user habituation or annoyance. Permission to freely reproduce all or part of this paper for noncommercial purposes is granted provided that copies bear this notice and the full citation on the first page. Reproduction for commercial purposes is strictly prohibited without the prior written consent of the Internet Society, the first-named author (for reproduction of an entire paper only), and the author's employer if the paper was prepared within the scope of employment.
The enormous efforts spent on collecting naturalistic driving data in the recent years has resulted in an expansion of publicly available traffic datasets, which has the potential to assist the development of the self-driving vehicles. However, we found that many of the attempts to utilize these datasets have failed in practice due to a lack of usability concern from the organizations that host these collected data. For example, extracting data associated with certain critical conditions from naturalistic driving data organized in chronological order may not be convenient for a vehicle engineer that doesn't have big data analytics experiences.To address the general usability challenges of these publicly available traffic datasets, we propose TrafficNet, a large-scale and extensible library of naturalistic driving scenarios, aiming at bridging the gap between research datasets and practically usable information for vehicle engineers and researchers. The proposed web-based driving scenario database preprocesses massive raw traffic data collected in chronological order into an organized scenario-based dataset by applying a set of categorization algorithms to label the naturalistic driving data with six different critical driving scenarios. TrafficNet opens not only the scenario library but also the source code of these categorization methods to the public, which will foster more sophisticated and accurate scenario-based categorization algorithms to advance the intelligent transportation research. The source code and the scenario database can be accessed at https://github.com/TrafficNet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.