Rice (Oryza sativa L.) is a staple food for more than half of the world's population. To meet the ever-increasing demand for food, because of population growth and improved living standards, world rice production needs to double by 2030. The development of new elite rice varieties with high yield and superior quality is challenging for traditional breeding approaches, and new strategies need to be developed. Here, we report the successful development of new elite varieties by pyramiding major genes that significantly contribute to grain quality and yield from three parents over five years. The new varieties exhibit higher yield potential and better grain quality than their parental varieties and the China's leading super-hybrid rice, Liang-you-pai-jiu (LYP9 or Pei-ai 64S/93-11). Our results demonstrate that rational design is a powerful strategy for meeting the challenges of future crop breeding, particularly in pyramiding multiple complex traits.
SUMMARYThe basic premise of high yield in rice is to improve leaf photosynthetic efficiency, and coordinate the source–sink relationship in rice plants. The quantitative trait loci (QTLs) qLSCHL4, japonica NAL1 allele from Nipponbare has a pleiotropic function, effectively increased leaf chlorophyll content, enlarged flag leaf size, and enhanced the yield of indica rice cultivar.
Highlight
PGL encodes CAO1 in rice, which is essential for Chl b synthesis and affects Chl synthesis and degradation. PGL also impacts leaf senescence and indirectly affects grain yield and quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.