Si-rhodamine probe with a trifluoromethyl group on the 2-position of the pendant phenyl ring retains high brightness and excellent stability in a harsh physiological environment.
To integrate driver experience and heterogeneous vehicle platform characteristics in a motion-planning algorithm, based on the driver-behavior-based transferable motion primitives (MPs), a general motion-planning framework for offline generation and online selection of MPs is proposed. Optimal control theory is applied to solve the boundary value problems in the process of generating MPs, where the driver behaviors and the vehicle motion characteristics are integrated into the optimization in the form of constraints. Moreover, a layered, unequal-weighted MP selection framework is proposed that utilizes a combination of environmental constraints, nonholonomic vehicle constraints, trajectory smoothness, and collision risk as the single-step extension evaluation index. The library of MPs generated offline demonstrates that the proposed generation method realizes the effective expansion of MP types and achieves diverse generation of MPs with various velocity attributes and platform types. We also present how the MP selection algorithm utilizes a unique MP library to achieve online extension of MP sequences. The results show that the proposed motion-planning framework can not only improve the efficiency and rationality of the algorithm based on driving experience but can also transfer between heterogeneous vehicle platforms and highlight the unique motion characteristics of the platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.