Purpose To investigate the anisotropic characteristics of the normal human corneal stroma using fresh corneal tissue. Methods Sixty-four corneal specimens extracted from stromal lenticules were included in this study. The specimens were cut in the temporal-nasal (horizontal) or superior-inferior (vertical) direction. Strip specimens were subjected to uniaxial tensile testing. The tensile properties of the specimens were measured and compared in the two directions. Results The low-strain tangent modulus was statistically significantly greater in the vertical direction than in the horizontal direction (1.32 ± 0.50 MPa vs 1.17 ± 0.43 MPa; P=0.035), as was the high-strain tangent modulus (51.26 ± 8.23 MPa vs 43.59 ± 7.96 MPa; P ≤ 0.001). The elastic modulus in the vertical direction was also higher than that in horizontal direction at stresses of 0.01, 0.02, and 0.03 MPa, but not statistically significant; so, P=0.338, 0.373, and 0.417, respectively. Conclusions The biomechanical behavior in normal human corneal stroma tissue is slightly stiffer in the vertical direction than in the horizontal direction. This information may aid our understanding of the biomechanical properties of the cornea and related diseases.
Purpose. To investigate the difference between the eyes from the same human with respect to the biomechanical properties of fresh corneal tissues and investigate the assumption of similarity of the corneal biomechanical properties between the eyes. Methods. Strip specimens extracted through a small incision lenticule extraction (SMILE) surgery were tested using a uniaxial tensile test. The specimens were extracted vertically. Low-strain tangent modulus (LSTM), high-strain tangent modulus (HSTM), and tensile strength (
σ
b
) were the biomechanical parameters used in the comparison of the eyes from the same human. Results. Ninety corneal specimens from 45 persons were included in this study. The LSTM of the left and right eyes were 1.34 ± 0.52 and 1.37 ± 0.46 MPa, while the HSTM were 50.53 ± 7.51 and 49.41 ± 7.01 MPa, respectively. There was no significant difference between the eyes in terms of LSTM, HSTM, and
σ
b
P
=
0.813
,
0.335
,
and
0.605
,
resp
.
. The LSTM and HSTM were significantly correlated with the spherical equivalent (SE) (
P
≤
0.01
,
P
=
0.001
, resp.). Conclusions. The assumption that the corneal biomechanical properties of the eyes from the same human are similar has been confirmed for the first time using fresh human corneal tissue. This finding may be useful in further biomechanical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.