Ischemic stroke is a multi-factorial cerebrovascular disease with high worldwide morbidity and mortality. In the past few years, multiple studies have revealed the underlying mechanism of ischemia/reperfusion injury, including calcium overload, amino acid toxicity, oxidative stress, and inflammation. Connexin 43 (Cx43), the predominant connexin protein in astrocytes, has been recently proven to display non-substitutable roles in the pathology of ischemic stroke development and progression through forming gap junctions and hemichannels. Under normal conditions, astrocytic Cx43 could be found in hemichannels or in the coupling with other hemichannels on astrocytes, neurons, or oligodendrocytes to form the neuro-glial syncytium, which is involved in metabolites exchange between communicated cells, thus maintaining the homeostasis of the CNS environment. In ischemic stroke, the phosphorylation of Cx43 might cause the degradation of gap junctions and the opening of hemichannels, contributing to the release of inflammatory mediators. However, the remaining gap junctions could facilitate the exchange of protective and harmful metabolites between healthy and injured cells, protecting the injured cells to some extent or damaging the healthy cells depending on the balance of the exchange of protective and harmful metabolites. In this study, we review the changes in astrocytic Cx43 expression and distribution as well as the influence of these changes on the function of astrocytes and other cells in the CNS, providing new insight into the pathology of ischemic stroke injury; we also discuss the potential of astrocytic Cx43 as a target for the treatment of ischemic stroke.
Electrochemical SERS (E-SERS) was used for the first time to study the interfacial behavior of a class of pyridinium-based biodegradable ionic liquids at a silver nanoparticle (AgNP) electrode surface. An isomeric series of ionic liquids (IL) based on 3-butoxycarbonyl-1-methylpyridinium bis(trifluoromethanesulfonyl)imide were prepared, which have demonstrable biodegradability. It was found that all four of the isomeric ionic liquids studied exhibited excellent electrochemical stability as binary mixtures combined with methanol, with the absence of any specific redox processes occurring over nearly 3.0 V of applied potential. Normal Raman measurements of the neat isobutyl IL showed a signal rich in vibrational features, with strong contributions from both the anion and the bulky organic cation. E-SERS of the neat isobutyl IL was shown to exhibit excellent potential stability, with no potential-induced orientational change at the metal surface. When the ionic liquids were prepared as methanolic binary mixtures, dissociation of the IL ions was observed, and only the organic cation was shown to adsorb at the Ag/solution interface. The nature of the substituent on the ester group of the IL series was observed to have a significant effect on the orientation of the cation on the metal surface, based on the application of the metal surface selection rules combined with computational data. Notably, the isobutyl and sec-butyl isomers were observed to have an orientation wherein the pyridinium ring was oriented perpendicular to the surface, while the tert-butyl and n-butyl isomers were observed to have an orientation wherein the pyridinium ring was lying flat on the metal surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.