After the birth of deep learning, artificial intelligence has entered a vigorous period of rapid development. In this process of rising and growing, we have made one achievement after another. When deep learning is applied to fruit target detection, due to the complex recognition background, large similarity between models, serious texture interference, and partial occlusion of fruits, the fruit target detection rate based on traditional methods is low. In order to solve these problems, a BCo-YOLOv5 network model is proposed to recognize and detect fruit targets in orchards. We use YOLOv5s as the basic model for feature image extraction and target detection. This paper introduces BCAM (bidirectional cross attention mechanism) into the network and adds BCAM between the backbone network and the neck network of the YOLOv5s basic model. BCAM uses weight multiplication strategy and maximum weight strategy to build a deeper position feature relationship, which can better assist the network in detecting fruit targets in fruit images. After training and testing the network, the map BCo-YOLOv5 network model reaches 97.70%. In order to verify the detection ability of the BCo-YOLOv5 network to citrus, apple, grape, and other fruit targets, we conducted a large number of experiments BCo-YOLOv5 network. The experimental results of the BCo-YOLOv5 network show that this method can effectively detect citrus, apple, and grape targets in fruit images, and the fruit target detection method based on BCo-YOLOv5 network is better than most orchard fruit detection methods.
The target detection of smoke through remote sensing images obtained by means of unmanned aerial vehicles (UAVs) can be effective for monitoring early forest fires. However, smoke targets in UAV images are often small and difficult to detect accurately. In this paper, we use YOLOX-L as a baseline and propose a forest smoke detection network based on the parallel spatial domain attention mechanism and a small-scale transformer feature pyramid network (PDAM–STPNNet). First, to enhance the proportion of small forest fire smoke targets in the dataset, we use component stitching data enhancement to generate small forest fire smoke target images in a scaled collage. Then, to fully extract the texture features of smoke, we propose a parallel spatial domain attention mechanism (PDAM) to consider the local and global textures of smoke with symmetry. Finally, we propose a small-scale transformer feature pyramid network (STPN), which uses the transformer encoder to replace all CSP_2 blocks in turn on top of YOLOX-L’s FPN, effectively improving the model’s ability to extract small-target smoke. We validated the effectiveness of our model with recourse to a home-made dataset, the Wildfire Observers and Smoke Recognition Homepage, and the Bowfire dataset. The experiments show that our method has a better detection capability than previous methods.
Tomato is an important and fragile crop. During the course of its development, it is frequently contaminated with bacteria or viruses. Tomato leaf diseases may be detected quickly and accurately, resulting in increased productivity and quality. Because of the intricate development environment of tomatoes and their inconspicuous disease spot features and small spot area, present machine vision approaches fail to reliably recognize tomato leaves. As a result, this research proposes a novel paradigm for detecting tomato leaf disease. The INLM (integration nonlocal means) filtering algorithm, for example, decreases the interference of surrounding noise on the features. Then, utilizing ResNeXt50 as the backbone, we create DCCAM-MRNet, a novel tomato image recognition network. Dilated Convolution (DC) was employed in STAGE 1 of the DCCAM-MRNet to extend the network's perceptual area and locate the scattered disease spots on tomato leaves. The coordinate attention (CA) mechanism is then introduced to record cross-channel information and direction- and position-sensitive data, allowing the network to more accurately detect localized tomato disease spots. Finally, we offer a mixed residual connection (MRC) technique that combines residual block (RS-Block) and transformed residual block (TR-Block) (TRS-Block). This strategy can increase the network's accuracy while also reducing its size. The DCCAM-classification MRNet's accuracy is 94.3 percent, which is higher than the existing network, and the number of parameters is 0.11 M lesser than the backbone network ResNeXt50, according to the experimental results. As a result, combining INLM and DCCAM-MRNet to identify tomato diseases is a successful strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.