After the birth of deep learning, artificial intelligence has entered a vigorous period of rapid development. In this process of rising and growing, we have made one achievement after another. When deep learning is applied to fruit target detection, due to the complex recognition background, large similarity between models, serious texture interference, and partial occlusion of fruits, the fruit target detection rate based on traditional methods is low. In order to solve these problems, a BCo-YOLOv5 network model is proposed to recognize and detect fruit targets in orchards. We use YOLOv5s as the basic model for feature image extraction and target detection. This paper introduces BCAM (bidirectional cross attention mechanism) into the network and adds BCAM between the backbone network and the neck network of the YOLOv5s basic model. BCAM uses weight multiplication strategy and maximum weight strategy to build a deeper position feature relationship, which can better assist the network in detecting fruit targets in fruit images. After training and testing the network, the map BCo-YOLOv5 network model reaches 97.70%. In order to verify the detection ability of the BCo-YOLOv5 network to citrus, apple, grape, and other fruit targets, we conducted a large number of experiments BCo-YOLOv5 network. The experimental results of the BCo-YOLOv5 network show that this method can effectively detect citrus, apple, and grape targets in fruit images, and the fruit target detection method based on BCo-YOLOv5 network is better than most orchard fruit detection methods.
Different from the conventional current-voltage and capacitance-voltage methods, Schottky contact barrier height extraction by admittance measurement is proposed and discussed in this paper. In this method, the barrier height can be simply extracted from the difference between the measured admittance at zero bias and a reasonably high forward bias. Both simulation results and experimental data demonstrate that the proposed method is effective not only for extraction of Schottky contacts with higher barrier heights (>0.4eV) but also for extraction of those with moderately lower barrier heights (0.2–0.4eV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.