Rationale:The inflammasome has been widely reported to be involved in various myopathies, but little is known about its role in denervated muscle. Here, we explored the role of NLRP3 inflammasome activation in experimental models of denervation in vitro and in vivo. Methods: Employing muscular NLRP3 specific knock-out (NLRP3 cKO) mice, we evaluated the effects of the NLRP3 inflammasome on muscle atrophy in vivo in muscle-specific NLRP3 conditional knockout (cKO) mice subjected to sciatic nerve transection and in vitro in cells incubated with NLRP3 inflammasome activator (NIA). To evaluate the underlying mechanisms, samples were collected at different time points for RNA-sequencing (RNA-seq), and the interacting molecules were comprehensively analysed. Results: In the experimental model, NLRP3 inflammasome activation after denervation led to pyroptosis and upregulation of MuRF1 and Atrogin-1 expression, facilitating ubiquitin-proteasome system (UPS) activation, which was responsible for muscle proteolysis. Conversely, genetic knockout of NLRP3 in muscle inhibited pyroptosis-associated protein expression and significantly ameliorated muscle atrophy. Furthermore, cotreatment with shRNA-NLRP3 markedly attenuated NIA-induced C2C12 myotube pyroptosis and atrophy. Intriguingly, inhibition of NLRP3 inflammasome activation significantly suppressed apoptosis. Conclusions: These in vivo and in vitro findings demonstrate that during denervation, the NLRP3 inflammasome is activated and stimulates muscle atrophy via pyroptosis, proteolysis and apoptosis, suggesting that it may contribute to the pathogenesis of neuromuscular diseases.
Background There are many studies indicating that alterations in the abundance of certain gut microbiota are associated with colorectal cancer (CRC). However, a causal relationship has not been identified due to confounding factors such as lifestyle, environmental, and possible reverse causal associations between the two. Furthermore, certain host gene mutations can also contribute to the development of CRC. However, the association between genes and gut microbes in patients with CRC has not been extensively studied. Methods We conducted a two-sample Mendelian randomization (MR) study to reveal the causal relationship between gut microbiota and CRC. We obtained SNPs associated with gut microbiome abundance as instrumental variables (IVs) from a large-scale, multi-ethnic GWAS study, and extracted CRC-related datasets from an East Asian Population genetic consortia GWAS (AGWAS) study and FinnGen consortium, respectively. We analyzed a total of 166 bacterial features at four taxonomic levels, including order, family, genus, and species. The inverse-variance-weighted (IVW), weighted median, MR-Egger, and simple median methods were applied to the MR analysis, and the robustness of the results were tested using a series of sensitivity analyses. We extracted IVs of gut microbiota with direct causal association with CRC for SNP annotation to identify the genes in which these genetic variants were located to reveal the possible host gene-microbiome associations in CRC patients. Results The findings from our MR analysis based on CRC-associated GWAS datasets from AGWAS revealed causal relationships between 6 bacterial taxa and CRC at a locus-wide significance level (P < 1 × 10–5). The IVW method found that family Porphyromonadaceae, genera Anaerotruncus, Intestinibacter, Slackia, and Ruminococcaceae UCG004, and species Eubacterium coprostanoligenes group were positively associated with CRC risk, which was generally consistent with the results of other complementary analyses. The results of a meta-analysis of the MR estimates from the AGWAS and the FinnGen datasets showed that family Porphyromonadaceae and genera Slackia, Anaerotruncus, and Intestinibacter replicated the same causal association. Sensitivity analysis of all causal associations did not indicate significant heterogeneity, horizontal pleiotropy, or reverse causal associations. We annotated the SNPs at a locus-wide significance level of the above intestinal flora and identified 24 host genes that may be related to pathogenic intestinal microflora in CRC patients. Conclusion This study supported the causal relationship of gut microbiota on CRC and revealed a possible correlation between genes and pathogenic microbiota in CRC. These findings suggested that the study of the gut microbiome and its further multi-omics analysis was important for the prevention and treatment of CRC.
Background Progerin elevates atrophic gene expression and helps modify the nuclear membrane to cause severe muscle pathology, which is similar to muscle weakness in the elderly, to alter the development and function of the skeletal muscles. Stress-induced premature senescence (SIPS), a state of cell growth arrest owing to such stimuli as oxidation, can be caused by progerin. However, evidence for whether SIPS-induced progerin accumulation is connected to denervation-induced muscle atrophy is not sufficient. Methods Flow cytometry and a reactive oxygen species (ROS) as well as inducible nitric oxide synthase (iNOS) inhibitors were used to assess the effect of oxidation on protein (p53), progerin, and nuclear progerin–p53 interaction in the denervated muscles of models of mice suffering from sciatic injury. Loss-of-function approach with the targeted deletion of p53 was used to assess connection among SIPS, denervated muscle atrophy, and fibrogenesis. Results The augmentation of ROS and iNOS-derived NO in the denervated muscles of models of mice suffering from sciatic injury upregulates p53 and progerin. The abnormal accumulation of progerin in the nuclear membrane as well as the activation of nuclear progerin–p53 interaction triggered premature senescence in the denervated muscle cells of mice. The p53-dependent SIPS in denervated muscles contributes to their atrophy and fibrogenesis. Conclusion Oxidative stress-triggered premature senescence via nuclear progerin–p53 interaction that promotes denervated skeletal muscular atrophy and fibrogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.