An optimized damage identification method of beam combined wavelet with neural network is presented in an attempt to improve the calculation iterative speed and accuracy damage identification. The mathematical model is developed to identify the structure damage based on the theory of finite elements and rotation modal parameters. The model is integrated with BP neural network optimization approach which utilizes the Genetic algorithm optimization method. The structural rotation modal parameters are performed with the continuous wavelet transform through the Mexico hat wavelet. The location of structure damage is identified by the maximum of wavelet coefficients. Then, the multi-scale wavelet coefficients modulus maxima are used as the inputs of the BP neural network, and through training and updating the optimal weight and threshold value to obtain the ideal output which is used to describe the degree of structural damage. The obtained results demonstrate the effectiveness of the proposed approach in simultaneously improving the structural damage identification precision including the damage locating and severity.
An improved load identification technology of a beam based on different regularization methods and model modifying methods is presented in an attempt to minimize the estimation error at several periodic loads. A hybrid model is developed to simulate such ill-posed problem interactions under different noise levels. The finite element model is modified with the different optimization algorithms to obtain the equivalent constraint condition. Experimental verification is also carried out to obtain correct modes and frequencies by considered vibration response and different boundary conditions. The measured results demonstrate the good agreement with the identification results. The results are shown that the improved method not only has more adaptive range and higher identification accuracy but also has effective identification ability for loads under different noise levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.