BackgroundThe purpose of the meta-analysis was to evaluate the efficiency of therapeutic botulinum toxin type A (BTX-A) in the prevention of maxillofacial and neck scars.Methods and FindingsInformation came from the following electronic databases: Medline, PubMed, Cochrane Library, and EMBASE (time was ended by August 31, 2015) to retrieve RCTs evaluating the effect of the BTX-A for hypertrophic scar on the maxillofacial or neck. All languages were included as long as they met the inclusion criteria. Here the effects of BTX-A were evaluated by comparing the width of the scar, patient satisfaction, and the visual analysis scores (VAS), respectively. Pooled weighted mean differences (WMDs), pooled odds ratios (ORs), and 95% confidence intervals (CI) were calculated. Nine RCTs covering a total of 539 patients were included. A statistically significant difference in scar width was identified between the BTX-A group and control group (non-BTX-A used) (WMD = -0.41, 95% CI = -0.68 to -0.14, P = 0.003). A statistically significant difference in patient satisfaction was observed between the BTX-A group and control group (OR = 25.76, 95% CI = 2.58 to 256.67, P = 0.006). And in patients regarding visual analysis scores (VAS), a statistically significant difference was also observed between the BTX-A group and control group (WMD = 1.30, 95% CI = 1.00 to 1.60, P < 0.00001).ConclusionsThis meta-analysis evaluates the efficacy of the BTX-A and confirms that BTX-A is a suitable potential therapy for the prevention of hypertrophic scars in patients in the maxillofacial and neck areas.
This study aims to explore the feasibility of the novel temperature-sensitive hydrogel-based dual sustained-release system (Van/SBA-15/CS-GP-SA) in the repair and treatment of infectious jaw defects. Van/SBA-15 was prepared using the mesoporous silica (SBA-15) as a carrier for vancomycin hydrochloride (Van), and Van/SBA-15 was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), Brunauer–Emmett–Teller (BET), and Barrett–Joyner–Halenda (BJH). The characterization results confirm that Van is loaded in SBA-15 successfully. Van/SBA-15/CS-GP-SA is constructed by encapsulating Van/SBA-15 in chitosan–sodium glycerophosphate–sodium alginate hydrogel (CS-GP-SA). The microstructures, sustained-release ability, biocompatibility, and antibacterial properties of Van/SBA-15/CS-GP-SA were systematically studied. Van/SBA-15/CS-GP-SA is found to have promising sustained-release ability, outstanding biocompatibility, and excellent antibacterial properties. This study provides new ideas for the management of infectious jaw defects.
The study aimed to explore the osteogenic effect induced by the combined use of bone morphogenetic protein‐2 (BMP‐2), vascular endothelial growth factor (VEGF), and transforming growth factor‐β1 (TGF‐β1), attain the best combination for osteogenic quality and efficiency, and explore the network regulation mechanisms of induced osteogenesis. MC3T3‐E1 cells were cultured in vitro, and BMP‐2, VEGF, and TGF β1 were added to osteogenic induction mediums in different combinations to conduct experiments. At 7 and 14 days, the alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining of the applied BMP‐2 and VEGF combination were deeper and the quantitative analysis were higher than those of the other groups. After optimizing the time–effect relationship of the combined application, with BMP‐2, VEGF, and TGF‐β1 adding in the early stage and BMP‐2 and VEGF adding in the late, the ALP and ARS staining of these groups were deeper and the quantitative analyses were meaningfully higher than the BMP‐2 and VEGF combination group at 7 and 14 days. The expression of the RUNX2 gene and the Smad1 signaling pathway in the optimized combination group was also significantly higher. The results demonstrate that the combination of BMP‐2, VEGF, and TGF‐β1 applied according to the time–effect relationship can significantly promote osteogenic differentiation mainly through the classical BMP‐receptor‐Smad signal pathway.
MicroRNAs are noncoding RNAs of 21 to 23 nucleotides in length that play important roles in almost all biological pathways. The roles of microRNA-299-3p in the development and progression of oral squamous cell carcinoma remain unclear. Expression level of microRNA-299-3p in oral squamous cell carcinoma cell lines was analyzed. Then, the effects of microRNA-299-3p on oral squamous cell carcinoma cell proliferation and migration were investigated. Moreover, bioinformation algorithm and Western blot were conducted to explore whether forkhead box P4 was a direct target of miR-299-3p. We showed that microRNA-299-3p expression was significantly reduced in oral squamous cell carcinoma cell lines. Next, overexpression of microRNA-299-3p was found to inhibit oral squamous cell carcinoma cell proliferation and migration but promote apoptosis. In addition, forkhead box P4 was identified as a functional target of microRNA-299-3p. Our results provide a new perspective for the mechanisms underlying the progression of oral squamous cell carcinoma and a novel target for the treatment of oral squamous cell carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.