Near-infrared spectroscopy (NIRS) has become widely accepted as a valuable tool for noninvasively monitoring hemodynamics for clinical and diagnostic purposes. Baseline shift has attracted great attention in the field, but there has been little quantitative study on baseline removal. Here, we aimed to study the baseline characteristics of an in-house-built portable medical NIRS device over a long time (>3.5 h). We found that the measured baselines all formed perfect polynomial functions on phantom tests mimicking human bodies, which were identified by recent NIRS studies. More importantly, our study shows that the fourth-order polynomial function acted to distinguish performance with stable and low-computation-burden fitting calibration (R-square >0.99 for all probes) among second- to sixth-order polynomials, evaluated by the parameters R-square, sum of squares due to error, and residual. This study provides a straightforward, efficient, and quantitatively evaluated solution for online baseline removal for hemodynamic monitoring using NIRS devices.
Inflammation is a common defensive response of the vascular system that involves the activation and mediation of immune cell and stem cell homing. However, it is usually hard to track and analyze the real-time status of these cell types toward the inflammation microenvironment in a large field of view with desired resolution. Here, we designed and synthesized near-infrared absorbing semiconducting polymer nanoparticles, BBT-TQP-NP (BTNPs), as the cell tracker and utilized their photoacoustic activity to unveil the targeting behaviors of macrophages, neutrophils, and mesenchymal stem cells to the inflamed sites in mice. Facilitated by multispectral optical-resolution photoacoustic microscopy (ORPAM), we can continuously monitor the in vivo photoacoustic signals of the labeled cells with cellular resolution in a widefield (a circle field-of-view with a diameter of 9 mm). In addition, the highly sensitive observation of vascular microstructures and labeled cells can reveal the time-dependent accumulating behaviors of various cell types toward inflammation sites. As a result, our study offers an effective and promising tracking strategy to analyze the in vivo status and fate of functional cells in targeting the diseased/damaged regions.
Photoacoustic imaging (PAI) has been widely used in multiscale and multicontrast imaging of biological structures and functions. Optical resolution photoacoustic microscopy (OR-PAM), an emerging submodality of PAI, features high lateral resolution and rich optical contrast, indicating great potential in visualizing cellular and subcellular structures. However, three-dimensional (3D) imaging of subcellular structures using OR-PAM has remained a challenge due to the limited axial resolution. In this study, we propose a multicolor 3D photoacoustic microscopy with high lateral/axial resolutions of 0.42/2 and 0.5/2.5 μm at 532 and 780 nm excitation, respectively. Owing to the significantly increased axial resolution, we could visualize the volumetric subcellular structures of melanoma cells using intrinsic contrast. In addition, we carried out multicolor imaging of labeled microtubules/clathrin-coated pits (CCP) and microtubules/mitochondria, respectively, with one scanning by using two different excitation wavelengths. The internal connections between different subcellular structures are revealed by quantitatively comparing the spatial distributions of microtubules/CCP and microtubules/mitochondria in a single cell. Current results suggest that the proposed OR-PAM may serve as an efficient tool for subcellular and cytophysiological studies.
Optical resolution photoacoustic microscopy (ORPAM) has demonstrated both high resolution and rich contrast imaging of optical chromophores in biologic tissues. To date, sensitivity remains a major challenge for ORPAM, which limits the capability of resolving biologic microvascular networks. In this study, we propose and evaluate a new ORPAM modality termed as optical resolution photoacoustic computed microscopy (ORPACM), through the combination of a two-dimensional laser-scanning system with a medical ultrasonographic platform. Apart from conventional ORPAMs, we record multiple photoacoustic (PA) signals using a 128-element ultrasonic transducer array for each pulse excitation. Then, we apply a reconstruction algorithm to recover one depth-resolved PA signal referred to as an A-line, which reveals more detailed information compared with conventional single-element transducer-based ORPAMs. In addition, we carried out both in vitro and in vivo experiments as well as quantitative analyses to show the advanced features of ORPACM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.