Hot stamping process has been regarded as one of the most attractive processes to produce high-strength parts with merits of low-forming load and small springback. However, the elongation of the hot-stamped parts is small, so the ability of crash resistance is limited. Recently, a novel hot stamping process integrated with quenching and partitioning treatment has been presented to improve the elongation of the final parts. In this article, the quenching and partitioning hot stamping process is further studied using the boron steel B1500HS, and the feasibility is verified by a series of quenching and partitioning tests followed by mechanical tests and microstructure observations. Moreover, an experimental tool for quenching and partitioning hot stamping process is first proposed in this article, where both air cooling device and heating system are designed, and a U-channel part is produced. Finally, in order to illustrate the active role of high elongation that the quenching and partitioning hot stamping process archived, numerical simulation of crash test for a B-pillar sample is conducted using finite element analysis software LS-DYNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.