Tiller number is highly regulated by controlling the formation of tiller bud and its subsequent outgrowth in response to endogenous and environmental signals. Here, we identified a rice mutant htd2 from one of the 15,000 transgenic rice lines, which is characterized by a high tillering and dwarf phenotype. Phenotypic analysis of the mutant showed that the mutation did not affect formation of tiller bud, but promoted the subsequent outgrowth of tiller bud. To isolate the htd2 gene, a map-based cloning strategy was employed and 17 new insertions-deletions (InDels) markers were developed. A high-resolution physical map of the chromosomal region around the htd2 gene was made using the F(2) and F(3) population. Finally, the gene was mapped in 12.8 kb region between marker HT41 and marker HT52 within the BAC clone OSJNBa0009J13. Cloning and sequencing of the target region from the mutant showed that the T-DNA insertion caused a 463 bp deletion between the promoter and first exon of an esterase/lipase/thioesterase family gene in the 12.8 kb region. Furthermore, transgenic rice with reduced expression level of the gene exhibited an enhanced tillering and dwarf phenotype. Accordingly, the esterase/lipase/thioesterase family gene (TIGR locus Os03g10620) was identified as the HTD2 gene. HTD2 transcripts were expressed mainly in leaf. Loss of function of HTD2 resulted in a significantly increased expression of HTD1, D10 and D3, which were involved in the strigolactone biosynthetic pathway. The results suggest that the HTD2 gene could negatively regulate tiller bud outgrowth by the strigolactone pathway.
A thermo-sensitive chlorophyll deficient mutant was isolated from more than 15,000 transgenic rice lines. The mutant displayed normal phenotype at 23 degrees C or lower temperature (permissive temperature). However, when grown at 26 degrees C or higher (nonpermissive temperature) the plant exhibited an abnormal phenotype characterized by yellow green leaves. Genetic analysis revealed that a single nuclear-encoded recessive gene is responsible for the mutation, which is tentatively designed as cde1(t) (chlorophyll deficient 1, temporally). PCR analysis and hygromycin resistance assay indicated the mutation was not caused by T-DNA insertion. To isolate the cde1(t) gene, a map-based cloning strategy was employed and 15 new markers (five SSR and ten InDels markers) were developed. A high-resolution physical map of the chromosomal region around the cde1(t) gene was made using F(2) and F(3) population consisting of 1,858 mutant individuals. Finally, the cde1(t) gene was mapped in 7.5 kb region between marker ID10 and marker ID11 on chromosome 2. Sequence analysis revealed only one candidate gene, OsGluRS, in the 7.5 kb region. Cloning and sequencing of the target region from the cde1(t) mutant showed that a missense mutation occurred in the mutant. So the OsGluRS gene (TIGR locus Os02 g02860) which encode glutamyl-tRNA synthetase was identified as the Cde1(t) gene.
Summary• G-proteins (guanine nucleotide-binding proteins that usually exhibit GTPase activities) and related signal transduction processes play important roles in mediating plant defense responses; here, a rice (Oryza sativa) cDNA clone, OsGAP1, encoding a GTPase-activating protein (GAP) that also contains a protein kinase C conserved region 2 (C2) domain is reported.• An interacting G-protein partner for the OsGAP1 protein was identified by yeast two-hybrid library screening and confirmed by co-immunoprecipitation; the GTPaseactivation activity of OsGAP1 on this interacting G-protein was demonstrated using in vitro assays.• OsGAP1 was induced by wounding in rice and the presence of the R locus Xa14 enhances such induction.• Gain-of-function tests in transgenic rice and Arabidopsis thaliana showed that constitutive expression of OsGAP1 led to increased resistance to bacterial pathogens in both monocots and dicots.
As one of the largest gene families, F-box domain proteins have important roles in regulating various developmental processes and stress responses. In this study, we have investigated a rice F-box domain gene, MAIF1. The MAIF1 protein is mainly localized in the plasma membrane and nucleus. MAIF1 expression is induced rapidly and strongly by abscisic acid (ABA) and abiotic stresses. MAIF1 expression is also induced in root tips by sucrose, independent of its hydrolytic hexose products, glucose and fructose, and the plant hormones auxin and cytokinin. Overexpression of MAIF1 reduces rice ABA sensitivity and abiotic stress tolerance and promotes rice root growth. These results suggest that MAIF1 is involved in multiple signaling pathways in regulating root growth. Growth restraint in plants is an acclimatization strategy against abiotic stress. Our results also suggest that MAIF1 plays the negative role in response to abiotic stress possibly by regulating root growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.