A series of novel thiazolidine-2,4-dione or rhodanine derivatives (, ) were synthesized and evaluated for their α-glucosidase inhibitory activity. The majority of compounds exhibited potent inhibitory activity in the range of 5.44 ± 0.13 to 50.45 ± 0.39 μM, when compared to the standard drug acarbose (IC = 817.38 ± 6.27 μM). Among the compounds in the series, compounds ,, ,, and showed potent inhibitory potential with IC values of 20.95 ± 0.21, 16.11 ± 0.19, 7.72 ± 0.16, 7.91 ± 0.17, 6.59 ± 0.15 and 5.44 ± 0.13 μM, respectively. Compound (IC = 5.44 ± 0.13 μM), containing chloro and rhodanine groups at the 2- and 4-positions of the phenyl ring respectively, was found to be the most active compound that inhibits α-glucosidase activity. Furthermore, molecular docking studies were performed to understand the binding interactions between the molecule and enzyme.
Benzothiazole-triazole derivatives 6a–6s have been synthesized and characterized by 1H-NMR and 13C-NMR. All synthetic compounds were screened for their in vitro α-glucosidase inhibitory activity by using Baker’s yeast α-glucosidase enzyme. The majority of compounds exhibited a varying degree of α-glucosidase inhibitory activity with IC50 values between 20.7 and 61.1 μM when compared with standard acarbose (IC50 = 817.38 μM). Among the series, compound 6s (IC50 = 20.7 μM) bearing a chlorine group at the 5-position of the benzothiazole ring and a tert-butyl group at the para position of the phenyl ring, was found to be the most active compound. Preliminary structure-activity relationships were established. Molecular docking studies were performed to predict the binding interaction of the compounds in the binding pocket of the enzyme.
A series of novel isatin-thiazole derivatives were synthesized and screened for their in vitro α-glucosidase inhibitory activity. These compounds displayed a varying degree of α-glucosidase inhibitory activity with IC50 ranging from 5.36 ± 0.13 to 35.76 ± 0.31 μm as compared to the standard drug acarbose (IC50 = 817.38 ± 6.27 μm). Among the series, compound 6p bearing a hydroxyl group at the 4-position of the right phenyl and 2-fluorobenzyl substituent at the N1-positions of the 5-methylisatin displayed the highest inhibitory activity with an IC50 value of 5.36 ± 0.13 μm. Molecular docking studies revealed the existence of hydrophobic interaction, CH-π interaction, arene-anion interaction, arene-cation interaction, and hydrogen bond between these compounds and α-glucosidase enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.