A cloud-based software, VirtualDose-IR (Virtual Phantoms Inc., Albany, New York, USA), designed to report organ doses and effective doses for a diverse patient population from interventional radiology (IR) procedures has been developed and tested. This software is based on a comprehensive database of Monte Carlo-generated organ dose built with a set of 21 anatomically realistic patient phantoms. The patient types included in this database are both male and female people with different ages reflecting reference adults, obese people with different BMIs and pregnant women at different gestational stages. Selectable parameters such as patient type, tube voltage, filtration thickness, beam direction, field size, and irradiation site are also considered in VirtualDose-IR. The software has been implemented using the ‘Software as a Service (SaaS)’ delivery concept permitting simultaneous multi-user, multi-platform access without requiring local installation. The patient doses resulting from different target sites and patient populations were reported using the VirtualDose-IR system. The patient doses under different source to surface distances (SSD) and beam angles calculated by VirtualDose-IR and Monte Carlo simulations were compared. For most organs, the dose differences between VirtualDose-IR results and Monte Carlo results were less than 0.3 mGy at 15 000 mGy * cm2 kerma-area product (KAP). The organ dose results were compared with measurement data previously reported in literatures. The doses to organs that were located within the irradiation field match closely with experimental measurement data. The differences in the effective dose values between calculated using VirtualDose-IR and those measured were less than 2.5%. The dose errors of most organs between VirtualDose-IR and literature results were less than 40%. These results validate the accuracy of organ doses reported by VirtualDose-IR. With the inclusion of pre-specified clinical IR examination parameters (such as beam direction, target location, field of view and beam quality) and the latest anatomically realistic patient phantoms in Monte Carlo simulations, VirtualDose-IR provides users with accurate dose information in order to systematically compare, evaluate, and optimize IR plans.
Mechanistic in silico models can provide insight into biological mechanisms and highlight uncertainties for experimental investigation. Radiation-induced double-strand breaks (DSBs) are known to be toxic lesions if not repaired correctly. Non-homologous end joining (NHEJ) is the major DSB-repair pathway available throughout the cell cycle and, recently, has been hypothesised to consist of a fast and slow component in G0/G1. The slow component has been shown to be resection-dependent, requiring the nuclease Artemis to function. However, the pathway is not yet fully understood. This study compares two hypothesised models, simulating the action of individual repair proteins on DSB ends in a step-by-step manner, enabling the modelling of both wild-type and protein-deficient cell systems. Performance is benchmarked against experimental data from 21 cell lines and 18 radiation qualities. A model where resection-dependent and independent pathways are entirely separated can only reproduce experimental repair kinetics with additional restraints on end motion and protein recruitment. However, a model where the pathways are entwined was found to effectively fit without needing additional mechanisms. It has been shown that DaMaRiS is a useful tool when analysing the connections between resection-dependent and independent NHEJ repair pathways and robustly matches with experimental results from several sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.